-
question_answer1)
If \[\mathbf{x=}\frac{\mathbf{1}}{\mathbf{2-}\sqrt{\mathbf{3}}}\], what is the value of \[{{\mathbf{x}}^{\mathbf{3}}}-\mathbf{2}{{\mathbf{x}}^{\mathbf{2}}}-\mathbf{7x}+\mathbf{5}\]
A)
2 done
clear
B)
3 done
clear
C)
5 done
clear
D)
9 done
clear
View Solution play_arrow
-
question_answer2)
What is the value of \[\frac{15}{\sqrt{10}+\sqrt{20}+\sqrt{40}-\sqrt{5}-\sqrt{80}}\], is being given that \[\sqrt{\mathbf{5}}=\mathbf{2}.\mathbf{236}\] and \[\sqrt{10}=3.1\mathbf{6}2\]
A)
5.398 done
clear
B)
4.258 done
clear
C)
5.355 done
clear
D)
3.855 done
clear
View Solution play_arrow
-
question_answer3)
If the sum of five consecutive integers is S, then the largest of those integers in terms of S is
A)
\[\frac{S-10}{5}\] done
clear
B)
\[\frac{S-4}{4}\] done
clear
C)
\[\frac{S+5}{4}\] done
clear
D)
\[\frac{S+10}{5}\] done
clear
View Solution play_arrow
-
question_answer4)
If \[x=\sqrt[3]{2+\sqrt{3}}\],then \[{{\mathbf{x}}^{\mathbf{3}}}+\frac{1}{{{\mathbf{x}}^{\mathbf{3}}}},=\]
A)
2 done
clear
B)
4 done
clear
C)
8 done
clear
D)
9 done
clear
View Solution play_arrow
-
question_answer5)
\[({{5}^{61}}+{{5}^{62}}+{{5}^{63}})\]is divisible by
A)
31 done
clear
B)
11 done
clear
C)
13 done
clear
D)
17 done
clear
View Solution play_arrow
-
question_answer6)
The value of: \[\sqrt{-\sqrt{3}+\sqrt{3+8\sqrt{7+4\sqrt{3}}}}\]is
A)
1 done
clear
B)
2 done
clear
C)
3 done
clear
D)
8 done
clear
View Solution play_arrow
-
question_answer7)
The value of\[\frac{1}{\sqrt{6.25}+\sqrt{5.25}}+\frac{1}{\sqrt{4.25}+\sqrt{3.25}}+\frac{1}{\sqrt{5.25}+\sqrt{4.25}}+\frac{1}{\sqrt{3.25}+\sqrt{2.25}}\]is
A)
1.00 done
clear
B)
1.25 done
clear
C)
1.50 done
clear
D)
2.25 done
clear
View Solution play_arrow
-
question_answer8)
\[\frac{1}{3-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-2}=\]
A)
5 done
clear
B)
4 done
clear
C)
3 done
clear
D)
2 done
clear
View Solution play_arrow
-
question_answer9)
The value of\[\sqrt{4\sqrt[3]{16\sqrt{4\sqrt[3]{16}\sqrt{4\sqrt[3]{16}}}}}......\]is
A)
2 done
clear
B)
\[{{2}^{2}}\] done
clear
C)
23 done
clear
D)
\[{{2}^{5}}\] done
clear
View Solution play_arrow
-
question_answer10)
If \[m=\sqrt{3+\sqrt{3+\sqrt{3+.....}}}\] \[n=\sqrt{3-\sqrt{3-\sqrt{3-.........}}}\] Then among the following the relation between m and n holds is
A)
\[m-n+1=0\] done
clear
B)
\[~m+n-1=0\] done
clear
C)
\[m+n+1=0\] done
clear
D)
\[m-n-1=0\] done
clear
View Solution play_arrow
-
question_answer11)
If \[\mathbf{x}=\frac{\sqrt{3}}{2}\], then the value of \[\sqrt{\mathbf{l}+\mathbf{a}}+\sqrt{\mathbf{l}-\mathbf{a}}\] is
A)
\[\sqrt{3}\] done
clear
B)
\[\frac{\sqrt{3}}{2}\] done
clear
C)
\[2+\sqrt{3}\] done
clear
D)
\[2-\sqrt{3}\] done
clear
View Solution play_arrow
-
question_answer12)
A rational numbers between \[-\,\mathbf{3}\] and 4.
A)
- 4.5 done
clear
B)
-3.5 done
clear
C)
\[\frac{13}{2}\] done
clear
D)
\[\frac{1}{2}\] done
clear
View Solution play_arrow
-
question_answer13)
The decimal representation of \[\frac{-26}{45}\] is
A)
\[.3\overline{5}\] done
clear
B)
\[-1\overline{55}\] done
clear
C)
\[-.3\overline{55}\] done
clear
D)
\[-\,0.5\overline{7}\] done
clear
View Solution play_arrow
-
question_answer14)
\[\mathbf{1}.\mathbf{272727}=\mathbf{1}.\overline{\mathbf{27}}\]can be expressed in the form \[\frac{p}{q}\], where p and q are integers an\[\mathbf{q}\ne 0\] than it is equal to
A)
\[\frac{106}{99}\] done
clear
B)
\[\frac{127}{99}\] done
clear
C)
\[\frac{14}{11}\] done
clear
D)
\[\frac{27}{99}\] done
clear
View Solution play_arrow
-
question_answer15)
If \[\mathbf{A}={{\mathbf{2}}^{x}},\mathbf{B}={{\mathbf{4}}^{\mathbf{y}}},\mathbf{C}={{\mathbf{8}}^{z}}\], where \[\mathbf{x}=0.\overline{1},\mathbf{y}=\mathbf{0}.\overline{\mathbf{4}},\mathbf{z}=\mathbf{0}.\overline{\mathbf{6}}\], then \[\mathbf{A}\times \mathbf{B}\times \mathbf{C}\]is
A)
8 done
clear
B)
2 done
clear
C)
16 done
clear
D)
4 done
clear
View Solution play_arrow
-
question_answer16)
If\[x=2.\overline{3}-0.\overline{9},\,y=2.\overline{5}-0.\overline{5},\]then \[{{x}^{2}}+{{y}^{2}}-2xy\] is
A)
\[\frac{1}{4}\] done
clear
B)
\[\frac{1}{3}\] done
clear
C)
\[\frac{1}{2}\] done
clear
D)
\[\frac{1}{5}\] done
clear
View Solution play_arrow
-
question_answer17)
If \[{{\left( 3 \right)}^{0.\overline{4}+0.\overline{5}}}=x,{{\left( 27 \right)}^{0.\overline{21}+0.\overline{12}}}\] then \[x\times y\] is
A)
\[{{3}^{4}}\] done
clear
B)
\[{{3}^{3}}\] done
clear
C)
32 done
clear
D)
\[{{3}^{5}}\] done
clear
View Solution play_arrow
-
question_answer18)
If \[\mathbf{x=}\frac{\sqrt{\mathbf{2}}\mathbf{+}\sqrt{\mathbf{1}}}{\sqrt{\mathbf{2}}\mathbf{-}\sqrt{\mathbf{1}}}\] and \[y\mathbf{=}\frac{\sqrt{\mathbf{2}}-\sqrt{\mathbf{1}}}{\sqrt{\mathbf{2}}+\sqrt{\mathbf{1}}}\], find the value of \[{{\mathbf{x}}^{\mathbf{2}}}\mathbf{-}{{\mathbf{y}}^{\mathbf{2}}}\]
A)
96 done
clear
B)
34 done
clear
C)
10 done
clear
D)
\[2\sqrt{2}\] done
clear
View Solution play_arrow
-
question_answer19)
If \[\mathbf{a=3+2}\sqrt{\mathbf{2}}\]and \[\mathbf{b=}\frac{\mathbf{1}}{\mathbf{a}}\], then \[{{\mathbf{a}}^{\mathbf{2}}}\mathbf{+}{{\mathbf{b}}^{\mathbf{2}}}\mathbf{=}\]
A)
49 done
clear
B)
34 done
clear
C)
100 done
clear
D)
102 done
clear
View Solution play_arrow
-
question_answer20)
\[\frac{{{\mathbf{4}}^{\mathbf{-}}}^{\mathbf{3}}\mathbf{\times }{{\mathbf{a}}^{\mathbf{-}}}^{\mathbf{5}}\mathbf{\times }{{\mathbf{b}}^{\mathbf{4}}}}{{{\mathbf{4}}^{\mathbf{-}}}^{5}\mathbf{\times }{{\mathbf{a}}^{\mathbf{-}}}^{8}\mathbf{\times }{{\mathbf{b}}^{3}}}=\]
A)
\[\frac{16{{a}^{3}}}{{{b}^{7}}}\] done
clear
B)
\[8\frac{{{a}^{2}}}{{{b}^{-7}}}\] done
clear
C)
\[2\frac{{{a}^{-13}}}{{{b}^{-7}}}\] done
clear
D)
\[\frac{{{a}^{8}}}{{{b}^{-1}}}\] done
clear
View Solution play_arrow
-
question_answer21)
if \[2\sqrt[3]{189}+3\sqrt[3]{448}-7\sqrt[3]{56}\] is simplified, then the resultant answer is
A)
\[8\sqrt[3]{7}\] done
clear
B)
\[6\sqrt[3]{7}\] done
clear
C)
\[4\sqrt[3]{7}\] done
clear
D)
\[9\sqrt[3]{7}\] done
clear
View Solution play_arrow
-
question_answer22)
If \[7\sqrt[4]{162}-5\sqrt[4]{32}+\sqrt[4]{1250}\] is simplified, then the resultant value is
A)
\[6\sqrt[3]{2}\] done
clear
B)
\[6\sqrt[4]{2}\] done
clear
C)
\[6\sqrt[5]{2}\] done
clear
D)
\[16\sqrt[4]{2}\] done
clear
View Solution play_arrow
-
question_answer23)
The two irrational numbers lying between \[\sqrt{\mathbf{3}}\]and \[\sqrt{5}\] are
A)
\[{{15}^{\frac{1}{4}}},\frac{{{3}^{\frac{1}{4}}}}{1}\times {{15}^{\frac{1}{8}}}\] done
clear
B)
\[{{6}^{\frac{1}{2}}},{{2}^{\frac{1}{8}}}\times {{6}^{\frac{1}{4}}}\] done
clear
C)
\[{{6}^{\frac{1}{8}}},{{2}^{\frac{1}{6}}}\times {{6}^{\frac{1}{6}}}\] done
clear
D)
\[{{3}^{\frac{1}{8}}},{{2}^{\frac{1}{8}}}\times {{6}^{\frac{1}{8}}}\] done
clear
View Solution play_arrow
-
question_answer24)
If \[x=\frac{1}{2+\sqrt{3}}\], then the value of \[{{x}^{3}}-2{{x}^{2}}-7x+5\]is
A)
1 done
clear
B)
2 done
clear
C)
3 done
clear
D)
4 done
clear
View Solution play_arrow
-
question_answer25)
If \[x=2-\sqrt{3}\], then the value of \[~{{\mathbf{x}}^{\mathbf{2}}}+\mathbf{4x}+\mathbf{4}\] is.
A)
\[12+2\sqrt{3}\] done
clear
B)
\[19+8\sqrt{3}\] done
clear
C)
\[12+2\sqrt{3}\] done
clear
D)
\[19-8\sqrt{3}\] done
clear
View Solution play_arrow
-
question_answer26)
The value of x, when \[{{\mathbf{2}}^{x+4}}{{.3}^{x+\mathbf{l}}}=\mathbf{288}\]
A)
1 done
clear
B)
-1 done
clear
C)
0 done
clear
D)
2 done
clear
View Solution play_arrow
-
question_answer27)
Which of the following is the value of a in \[\frac{\sqrt{\mathbf{5}}\mathbf{-}\sqrt{\mathbf{3}}}{\sqrt{\mathbf{5}}\mathbf{+}\sqrt{\mathbf{3}}}\mathbf{=a+b}\sqrt{\mathbf{15}}\]
A)
2 done
clear
B)
-1 done
clear
C)
-3 done
clear
D)
4 done
clear
View Solution play_arrow
-
question_answer28)
The square root of \[\mathbf{0}.\overline{\mathbf{4}}\] is
A)
\[0.\overline{6}\] done
clear
B)
\[0.\overline{7}\] done
clear
C)
\[0.\overline{8}\] done
clear
D)
\[0.\overline{9}\] done
clear
View Solution play_arrow
-
question_answer29)
If \[\sqrt{\mathbf{18225}}=\mathbf{135}\], then the value of \[\sqrt{182.25}+\sqrt{1.8225}+\sqrt{0.018225}+\sqrt{0.00018225}\] is
A)
1.49985 done
clear
B)
14.9985 done
clear
C)
149.985 done
clear
D)
1499.85 done
clear
View Solution play_arrow
-
question_answer30)
If\[{{\mathbf{2}}^{\mathbf{x-1}}}\mathbf{+}{{\mathbf{2}}^{\mathbf{x+1}}}\mathbf{=640}\], the value of x is
A)
7 done
clear
B)
8 done
clear
C)
9 done
clear
D)
6 done
clear
View Solution play_arrow
-
question_answer31)
The product of \[\left( 0.\overline{\mathbf{09}}\times \mathbf{7}.\overline{\mathbf{3}} \right)\] is equal to
A)
1 done
clear
B)
0 done
clear
C)
0 done
clear
D)
\[\frac{1}{2}\] done
clear
View Solution play_arrow
-
question_answer32)
\[\mathbf{0}.\mathbf{142857}-\mathbf{0}.\mathbf{285714}\]is equal to
A)
2 done
clear
B)
1 done
clear
C)
0 done
clear
D)
\[\frac{1}{2}\] done
clear
View Solution play_arrow
-
question_answer33)
\[\frac{\mathbf{1}}{\mathbf{1+}{{\mathbf{2}}^{\mathbf{x-y}}}}\mathbf{+}\frac{\mathbf{1}}{\mathbf{1+}{{\mathbf{2}}^{\mathbf{y-x}}}}\mathbf{=?}\]
A)
\[x\] done
clear
B)
\[x-y\] done
clear
C)
1 done
clear
D)
0 done
clear
View Solution play_arrow
-
question_answer34)
If \[x+\sqrt{7}=7+\sqrt{y},x+\sqrt{7}=7+\sqrt{y}\], and x, y are positive integers, then the value of \[\frac{\sqrt{x}+y}{x+\sqrt{y}}\]is.
A)
0 done
clear
B)
2 done
clear
C)
\[\frac{1}{2}\] done
clear
D)
1 done
clear
View Solution play_arrow
-
question_answer35)
The largest among the numbers \[{{\mathbf{2}}^{\mathbf{250}}}\mathbf{,}{{\mathbf{3}}^{\mathbf{150}}}\mathbf{,}{{\mathbf{5}}^{\mathbf{100}}}\] and \[{{\mathbf{4}}^{\mathbf{200}}}\] is
A)
\[{{4}^{200}}\] done
clear
B)
5100 done
clear
C)
2250 done
clear
D)
2150 done
clear
View Solution play_arrow
-
question_answer36)
\[\frac{{{\mathbf{a}}^{\mathbf{-1}}}}{{{\mathbf{a}}^{\mathbf{-1}}}\mathbf{+}{{\mathbf{b}}^{\mathbf{-1}}}}\mathbf{+}\frac{{{\mathbf{a}}^{\mathbf{-1}}}}{{{\mathbf{a}}^{\mathbf{-1}}}\mathbf{-}{{\mathbf{b}}^{\mathbf{-1}}}}\mathbf{=?}\]
A)
0 done
clear
B)
1 done
clear
C)
\[\frac{2{{b}^{2}}}{{{b}^{2}}-{{a}^{2}}}\] done
clear
D)
\[\frac{2{{b}^{2}}}{{{b}^{2}}+{{a}^{2}}}\] done
clear
View Solution play_arrow
-
question_answer37)
\[\frac{{{\mathbf{x}}^{\mathbf{-1}}}}{{{\mathbf{x}}^{\mathbf{-1}}}\mathbf{+}{{\mathbf{y}}^{\mathbf{-1}}}}\mathbf{+}\frac{{{\mathbf{x}}^{\mathbf{-1}}}}{{{\mathbf{x}}^{\mathbf{-1}}}\mathbf{+}{{\mathbf{y}}^{\mathbf{-1}}}}\mathbf{=?}\]
A)
\[\frac{2{{y}^{2}}}{{{y}^{2}}-{{x}^{2}}}\] done
clear
B)
\[\frac{2{{x}^{2}}}{{{y}^{2}}-{{x}^{2}}}\] done
clear
C)
\[\frac{2{{y}^{2}}}{{{y}^{2}}+{{z}^{2}}}\] done
clear
D)
\[\frac{2{{x}^{2}}}{{{y}^{2}}+{{x}^{2}}}\] done
clear
View Solution play_arrow
-
question_answer38)
\[\frac{{{\left( {{\mathbf{a}}^{\mathbf{x+y}}} \right)}^{\mathbf{2}}}{{\left( {{\mathbf{a}}^{\mathbf{y+z}}} \right)}^{\mathbf{2}}}{{\left( {{\mathbf{a}}^{\mathbf{z+x+}}} \right)}^{\mathbf{2}}}}{\left( {{\mathbf{a}}^{\mathbf{4x}}}\mathbf{.}{{\mathbf{a}}^{\mathbf{4y}}}\mathbf{.}{{\mathbf{a}}^{\mathbf{4z}}} \right)}\mathbf{=?}\]
A)
2a done
clear
B)
\[x+y+z\] done
clear
C)
1 done
clear
D)
0 done
clear
View Solution play_arrow
-
question_answer39)
The greatest among \[\sqrt{\mathbf{11}}\mathbf{-}\sqrt{\mathbf{9}}\mathbf{,}\sqrt{\mathbf{5}}\mathbf{-}\sqrt{\mathbf{3}}\mathbf{,}\sqrt{\mathbf{7}}\mathbf{-}\sqrt{\mathbf{5}}\mathbf{,}\sqrt{\mathbf{13}}\mathbf{-}\sqrt{\mathbf{11}}\]is
A)
\[\sqrt{11}-\sqrt{9}\] done
clear
B)
\[\sqrt{5}-\sqrt{3}\] done
clear
C)
\[\sqrt{7}-\sqrt{5}\] done
clear
D)
\[\sqrt{13}-\sqrt{11}\] done
clear
View Solution play_arrow
-
question_answer40)
The smallest of \[\sqrt{6}+\sqrt{3},\] \[\sqrt{7}+\sqrt{2},\]\[\sqrt{8}+\sqrt{1},\] \[\sqrt{5}+\sqrt{4}\] is
A)
\[\sqrt{6}+\sqrt{3}\] done
clear
B)
\[\sqrt{7}+\sqrt{2}\] done
clear
C)
\[\sqrt{8}+\sqrt{1}\] done
clear
D)
\[\sqrt{5}+\sqrt{4}\] done
clear
View Solution play_arrow