JEE Main & Advanced Mathematics Applications of Derivatives Question Bank Maxima and Minima

  • question_answer
     The ratio of height of cone of maximum volume inscribed in a sphere to its radius is                        [Orissa JEE  2004]

    A)            \[\frac{3}{4}\]

    B)            \[\frac{4}{3}\]

    C)            \[\frac{1}{2}\]

    D)            \[\frac{2}{3}\]

    Correct Answer: B

    Solution :

               Let diameter of sphere \[AE=2r\]            Let radius of cone is x and height is y            \ \[AD=y\] since \[B{{D}^{2}}=AD.DE\]
               or \[{{x}^{2}}=y(2r-y)\]                                      .....(i)            Volume of cone \[V=\frac{1}{3}\pi {{x}^{2}}y=\frac{1}{3}\pi y(2r-y)y=\frac{1}{3}\pi (2r{{y}^{2}}-{{y}^{3}})\]            Þ  \[\frac{dV}{dy}=\frac{1}{3}\pi (4ry-3{{y}^{2}})\] Þ \[\frac{dV}{dy}=0\]            Þ  \[\frac{1}{3}\pi (4ry-3{{y}^{2}})=0\] Þ \[y(4r-3y)=0\]Þ \[y=\frac{4}{3}r,\,0\]            Now \[\frac{{{d}^{2}}V}{d{{y}^{2}}}=\frac{1}{3}\pi (4r-6y)\], put \[y=\frac{4}{3}r\]            Þ  \[\frac{{{d}^{2}}V}{d{{y}^{2}}}=\frac{1}{3}\pi \,\left( 4r-6\times \frac{4}{3}r \right)\] = negative value            So, volume of cone is maximum at \[y=\frac{4}{3}r\]                    Þ  \[\frac{\text{Height}}{\text{Radius}}\]=\[\frac{y}{r}=\frac{4}{3}\].


You need to login to perform this action.
You will be redirected in 3 sec spinner