A) \[{{I}_{1}}>{{I}_{3}}>{{I}_{2}}\]
B) \[{{I}_{3}}>{{I}_{1}}>{{I}_{2}}\]
C) \[{{I}_{1}}>{{I}_{2}}>{{I}_{3}}\]
D) \[{{I}_{3}}>{{I}_{2}}>{{I}_{1}}\]
Correct Answer: A
Solution :
[a] \[{{I}_{1}}=\int\limits_{0}^{\frac{\pi }{2}}{\cos (\sin \,\,x)dx}\] |
\[{{I}_{2}}=\int\limits_{0}^{\frac{\pi }{2}}{sin(cos\,\,x)dx}\] |
\[{{I}_{3}}=\int\limits_{0}^{\frac{\pi }{2}}{cos\,x\,dx}\] |
Let \[{{f}_{1}}(x)=\cos (\sin \,\,x),{{f}_{2}}(x)=\sin (\cos \,\,x),\] |
\[{{f}_{3}}(x)=\cos \,\,x\] |
If \[x>0\], then \[\sin x<x\] |
\[\Rightarrow \] for \[0<x<\frac{\pi }{2},\sin (\cos \,\,x)<\cos \,\,x\] |
Also, \[0<x<\frac{\pi }{2}\] then \[\sin x<x\] |
\[\Rightarrow \cos (\sin \,\,x)>\cos \,\,x\] |
\[\therefore \cos (\sin \,\,x)>\cos \,\,x>\sin (\cos \,\,x)\] if \[0<x<\frac{\pi }{2}\] |
\[\therefore {{I}_{1}}>{{I}_{3}}>{{I}_{2}}\] |
You need to login to perform this action.
You will be redirected in
3 sec