JEE Main & Advanced Mathematics Indefinite Integrals Question Bank Self Evaluation Test - Integrals

  • question_answer
    \[\int{\frac{(1+x)}{x{{(1+x{{e}^{x}})}^{2}}}dx}\] is

    A) \[\ln \,\,\left| \frac{x{{e}^{x}}}{1+x{{e}^{x}}} \right|+\frac{1}{1+x{{e}^{x}}}+C\]

    B) \[(1+x{{e}^{x}})+ln\left| \frac{x{{e}^{x}}}{1+x{{e}^{x}}} \right|+C\]

    C) \[\frac{1}{1+x{{e}^{x}}}+ln\left| x{{e}^{x}}(1+x{{e}^{x}}) \right|+C\]

    D) None of these

    Correct Answer: A

    Solution :

    [a] \[I=\int{\frac{(1+x)}{x{{(1+x{{e}^{x}})}^{2}}}dx=\int{\frac{(1+x){{e}^{x}}}{x{{e}^{x}}{{(1+x{{e}^{x}})}^{2}}}dx}}\]
    Put \[x{{e}^{x}}=t\Rightarrow ({{e}^{x}}+x{{e}^{x}})dx=dt\]
    \[I=\int{\frac{dt}{t{{(1+t)}^{2}}}}\]
    Let \[\frac{1}{t{{(1+t)}^{2}}}=\frac{A}{t}+\frac{B}{1+t}+\frac{D}{{{(1+t)}^{2}}},\] we get
    \[A=\frac{1}{{{(1+0)}^{2}}}=1,\,\,D=\frac{1}{-1}=-1\]
    Equating coefficient of \[{{t}^{2}},0=A+B\Rightarrow B=-1\]
    \[\therefore I=\int{\left[ \frac{1}{t}-\frac{1}{1+t}-\frac{1}{{{(1+t)}^{2}}} \right]dt}\]
    \[=\,\,\,\,ln\left| t \right|-ln\left| 1+t \right|+\frac{1}{1+t}+C\]
    \[=\,\,ln\left| \frac{t}{1+t} \right|+\frac{1}{1+t}+C\]
    \[=\,\,\,ln\left| \frac{x{{e}^{x}}}{1+x{{e}^{x}}} \right|+\frac{1}{1+x{{e}^{x}}}+C\]


You need to login to perform this action.
You will be redirected in 3 sec spinner