JEE Main & Advanced Mathematics Trigonometric Identities Question Bank Trigonometrical ratios of sum and difference of two and three angles

  • question_answer
    \[\sec {{50}^{o}}+\tan {{50}^{o}}\] is equal to [DCE 2002]

    A) \[\tan {{20}^{o}}+\tan {{50}^{o}}\]

    B) \[2\tan {{20}^{o}}+\tan {{50}^{o}}\]

    C) \[\tan {{20}^{o}}+2\tan {{50}^{o}}\]

    D) \[2\tan {{20}^{o}}+2\tan {{50}^{o}}\]

    Correct Answer: C

    Solution :

    \[\sec {{50}^{o}}+\tan {{50}^{o}}\] Þ \[\tan ({{70}^{o}}-{{20}^{o}})=\frac{\tan {{70}^{o}}-\tan {{20}^{o}}}{1+\tan {{70}^{o}}\tan {{20}^{o}}}\] Þ \[\tan {{50}^{o}}+\tan {{70}^{o}}\tan {{20}^{o}}\tan {{50}^{o}}=\tan {{70}^{o}}-\tan {{20}^{o}}\] Þ \[\tan {{50}^{o}}+\tan {{50}^{o}}=\tan {{70}^{o}}-\tan {{20}^{o}}\]   \[[\,\because \tan {{70}^{o}}=\cot {{20}^{o}}]\] Þ \[2\tan {{50}^{o}}+\tan {{20}^{o}}=\tan {{70}^{o}}\] Þ \[2\tan {{50}^{o}}+\tan {{20}^{o}}=\tan {{50}^{o}}+\sec {{50}^{o}}\].


You need to login to perform this action.
You will be redirected in 3 sec spinner