A) \[-\frac{\sqrt{5}}{2}\]
B) \[\frac{2}{\sqrt{5}}\]
C) \[\frac{\sqrt{5}}{2}\]
D) \[-\frac{\sqrt{5}}{4}\]
Correct Answer: A
Solution :
[a] \[\because \,\,\,\,y\sqrt{1-{{x}^{2}}}=k-x\sqrt{1-{{y}^{2}}}\] ...(i) On differentiating both side of eq. (i) w.r.t. x we get, \[\frac{dy}{dx}\sqrt{1-{{x}^{2}}}-y\frac{2x}{2\sqrt{1-{{x}^{2}}}}=0-\sqrt{1-{{y}^{2}}}+\frac{x\cdot y}{\sqrt{1-{{y}^{2}}}}\frac{dy}{dx}\] Put \[x=\frac{1}{2}\]and \[y=-\frac{1}{4}\] we get \[\frac{dy}{dx}\cdot \frac{\sqrt{3}}{2}-\left( -\frac{1}{4} \right)\cdot \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}=-\frac{\sqrt{15}}{4}+\frac{-\frac{1}{8}}{\frac{\sqrt{15}}{4}}\cdot \frac{dy}{dx}\] \[\therefore \,\,\,\frac{dy}{dx}=-\frac{\sqrt{5}}{2}\]You need to login to perform this action.
You will be redirected in
3 sec