Transpose of a Matrix
Category : JEE Main & Advanced
The matrix obtained from a given matrix A by changing its rows into columns or columns into rows is called transpose of matrix A and is denoted by \[{{A}^{T}}\]or \[{A}'\].
From the definition it is obvious that if order of A is \[m\times n,\] then order of \[{{A}^{T}}\]is \[n\times m\].
Example:
Transpose of matrix \[{{\left[ \begin{matrix} {{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\ {{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\ \end{matrix} \right]}_{2\times 3}}\] is \[\text{ }{{\left[ \begin{matrix} {{a}_{1}} & {{b}_{1}} \\ {{a}_{2}} & {{b}_{2}} \\ {{a}_{3}} & {{b}_{3}} \\ \end{matrix} \right]}_{3\times 2}}\]
Properties of transpose : Let A and B be two matrices then,
(i) \[{{({{A}^{T}})}^{T}}=A\]
(ii) \[{{(A+B)}^{T}}={{A}^{T}}+{{B}^{T}},A\]and B being of the same order
(iii) \[{{(kA)}^{T}}=k{{A}^{T}},k\] be any scalar (real or complex)
(iv) \[{{(AB)}^{T}}={{B}^{T}}{{A}^{T}},A\] and B being conformable for the product AB
(v) \[{{({{A}_{1}}{{A}_{2}}{{A}_{3}}.....{{A}_{n-1}}{{A}_{n}})}^{T}}={{A}_{n}}^{T}{{A}_{n-1}}^{T}.......{{A}_{3}}^{T}{{A}_{2}}^{T}{{A}_{1}}^{T}\]
(vi) \[{{I}^{T}}=I\]
You need to login to perform this action.
You will be redirected in
3 sec