question_answer1) In the given figure, \[\Delta ABC\tilde{\ }\Delta DCB,\] then \[AB\times DB=\]
A) \[OA\times OD\] done clear
B) \[OB\times OC\] done clear
C) \[AB\times DC\] done clear
D) \[DC\times AC\] done clear
View Solution play_arrowA) \[{{72}^{o}}\] done clear
B) \[{{54}^{o}}\] done clear
C) \[{{36}^{o}}\] done clear
D) \[{{60}^{o}}\] done clear
View Solution play_arrowquestion_answer3) In rhombus ABCD \[A{{B}^{2}}+B{{C}^{2}}+C{{D}^{2}}+D{{A}^{2}}=\]
A) \[O{{A}^{2}}+O{{B}^{2}}\] done clear
B) \[O{{B}^{2}}+O{{C}^{2}}\] done clear
C) \[O{{C}^{2}}+O{{D}^{2}}\] done clear
D) \[A{{C}^{2}}+B{{D}^{2}}\] done clear
View Solution play_arrowquestion_answer4) In the given figure, \[\angle BAC=\angle ADC,\] then \[CA/CB\] is
A) \[CB\times CD\] done clear
B) \[C{{A}^{2}}\] done clear
C) \[DC/AC\] done clear
D) \[C{{D}^{2}}\] done clear
View Solution play_arrowA) \[{{80}^{o}}\] done clear
B) \[{{50}^{o}}\] done clear
C) \[{{40}^{o}}\] done clear
D) \[{{160}^{o}}\] done clear
View Solution play_arrowA) PQ done clear
B) 2PQ done clear
C) 3PQ done clear
D) 4PQ done clear
View Solution play_arrowA) \[O{{A}^{2}}+O{{B}^{2}}+O{{C}^{2}}\] done clear
B) \[O{{D}^{2}}+O{{E}^{2}}+O{{F}^{2}}\] done clear
C) \[A{{B}^{2}}+B{{C}^{2}}+A{{C}^{2}}\] done clear
D) \[A{{E}^{2}}+B{{F}^{2}}+C{{D}^{2}}\] done clear
View Solution play_arrowA) AB done clear
B) \[AC\] done clear
C) BC done clear
D) None of these done clear
View Solution play_arrowA) \[1/{{p}^{2}}\] done clear
B) \[2/{{p}^{2}}\] done clear
C) \[{{p}^{2}}\] done clear
D) \[2{{p}^{2}}\] done clear
View Solution play_arrowA) \[AB\times AC\] done clear
B) \[BD\times CD\] done clear
C) \[BC\times AC\] done clear
D) \[AB\times BC\] done clear
View Solution play_arrowA) \[2/z\] done clear
B) \[1/z\] done clear
C) \[{{z}^{2}}\] done clear
D) z done clear
View Solution play_arrowA) \[7.5cm\] done clear
B) \[15cm\] done clear
C) \[22.5cm\] done clear
D) \[30cm\] done clear
View Solution play_arrowA) \[16\,cm\] done clear
B) \[14\,cm\] done clear
C) \[15\,cm\] done clear
D) \[17\,cm\] done clear
View Solution play_arrowA) \[22\,sq.\,cm\] done clear
B) \[25\,sq.\,cm\] done clear
C) \[21\,sq.\,cm\] done clear
D) \[24\,sq.\,cm\] done clear
View Solution play_arrowA) \[2CD\text{ }.\text{ }AD\] done clear
B) \[2AC.BD\] done clear
C) \[2CD.CD\] done clear
D) \[2AB.BC\] done clear
View Solution play_arrowA) 27 feet done clear
B) 32 feet done clear
C) 45 feet done clear
D) 36 feet done clear
View Solution play_arrowA) 13m done clear
B) 12m done clear
C) 14 m done clear
D) 15 m done clear
View Solution play_arrowA) 75 cm done clear
B) 96 cm done clear
C) 48 cm done clear
D) 60 cm done clear
View Solution play_arrowA) \[300\sqrt{67}\,km\] done clear
B) \[400\sqrt{61}\,km\] done clear
C) \[200\sqrt{61}\,km\] done clear
D) \[300\sqrt{61}\,km\] done clear
View Solution play_arrow(i) What is the distance between the parks through town? |
(ii) What is the distance from Park A to Park B through point R? |
A) i-9 m ii-13m done clear
B) i-8 m ii-12.5 m done clear
C) i-8.75 m ii-12 m done clear
D) i-9m ii-14m done clear
View Solution play_arrowA) \[4\text{ }cm\] done clear
B) \[2\sqrt{5}\,cm\] done clear
C) \[3\sqrt{5}\,cm\] done clear
D) \[5\text{ }cm\] done clear
View Solution play_arrowquestion_answer22) Match the following.
Column-l | Column-ll |
(P) In \[\Delta \,ABC\] and \[\Delta \,PQR\] \[\frac{AB}{PQ}=\frac{AC}{PR},\angle A=\angle P\]\[\Rightarrow \] \[\Delta ABC\tilde{\ }\Delta PQR\] | (1) AA similarity criterion |
(Q) In \[\Delta ABC\] and \[\Delta PQR\] \[\angle A=\angle P,\angle B=\angle Q\] \[\Rightarrow \] \[\Delta \,ABC\tilde{\ }\Delta PQR\] | (2) SAS similarity criterion |
(R) In \[\Delta \,ABC\] and \[\Delta \,PQR\] \[\frac{AB}{PQ}=\frac{AC}{PR}=\frac{BC}{QR}\] \[\Rightarrow \] \[\Delta \,ABC\tilde{\ }\Delta PQR\] | (3) SSS similarity criterion |
(S) In \[\Delta \,ABC\], \[DE||BC\] \[\Rightarrow \] \[\frac{AD}{BD}=\frac{AE}{CE}\] | (4) BPT |
A) (P)\[\to \](1), (Q)\[\to \](2), (R)\[\to \] (3), (S)\[\to \](4) done clear
B) (P)\[\to \](2), (Q)\[\to \](1), (R)\[\to \](3), (S)\[\to \](4) done clear
C) (P)\[\to \](4), (Q)\[\to \](2). (R)\[\to \](1), (S)\[\to \](3) done clear
D) (P)\[\to \](3),(Q)\[\to \](1),(R)\[\to \](4),(S)\[\to \](2) done clear
View Solution play_arrowquestion_answer23) Which of the following statements is CORRECT?
A) The ratio of the areas of two similar triangles is equal to the ratio of their corresponding sides. done clear
B) If a line is drawn parallel to one side of the triangle to intersect the other two sides in distinct points then the other two sides are divided in the same ratio. done clear
C) All similar figures are congruent. done clear
D) If in two triangles, two angles of one triangle is equal to the two angles of the other triangle then two triangles may or may not be congruent. done clear
View Solution play_arrow(i) \[4A{{C}^{2}}+B{{C}^{2}}\] |
(ii) \[4B{{C}^{2}}+A{{C}^{2}}\] |
(iii) \[4(A{{Q}^{2}}+B{{P}^{2}})\] |
A)
i-\[4A{{Q}^{2}}\] | ii-\[4B{{P}^{2}}\] | iii-\[5A{{B}^{2}}\] |
B)
i-\[5A{{Q}^{2}}\] | ii-\[5B{{P}^{2}}\] | iii-\[~4A{{B}^{2}}\] |
C)
i-\[4A{{Q}^{2}}\] | ii-\[5B{{P}^{2}}\] | iii-\[5A{{B}^{2}}\] |
D)
i-\[5A{{Q}^{2}}\] | ii-\[4B{{P}^{2}}\] | iii-\[~4A{{B}^{2}}\] |
A)
(i) | (ii) |
\[\left( 2+\sqrt{2} \right):2\] | \[\sqrt{2}-2\] |
B)
(i) | (ii) |
\[\left( 2-\sqrt{2} \right):2\] | \[\sqrt{2}-1\] |
C)
(i) | (ii) |
\[\left( 2-\sqrt{3} \right):3\] | \[3\] |
D)
(i) | (ii) |
\[\left( 2+\sqrt{2} \right):3\] | \[\sqrt{2}-3\] |
You need to login to perform this action.
You will be redirected in
3 sec