A) 7 cm done clear
B) 9 cm done clear
C) 11 cm done clear
D) 16 cm done clear
View Solution play_arrowA) 539.712 \[c{{m}^{2}}\] done clear
B) 538.721 \[c{{m}^{2}}\] done clear
C) 540.712 \[c{{m}^{2}}\] done clear
D) 539.217 \[c{{m}^{2}}\] done clear
View Solution play_arrowA) 190 \[{{m}^{2}}\] done clear
B) 180 \[{{m}^{2}}\] done clear
C) 196 \[{{m}^{2}}\] done clear
D) 195 \[{{m}^{2}}\] done clear
View Solution play_arrowA) 380 \[{{m}^{2}}\] done clear
B) 370\[{{m}^{2}}\] done clear
C) 374 \[{{m}^{2}}\] done clear
D) 384\[{{m}^{2}}\] done clear
View Solution play_arrowA) 280 done clear
B) 325 done clear
C) 300 done clear
D) 420 done clear
View Solution play_arrowA) 60% done clear
B) 50% done clear
C) 40% done clear
D) 32% done clear
View Solution play_arrowA) 25 \[c{{m}^{2}}\] done clear
B) \[\frac{25}{2}\sqrt{2}\,c{{m}^{2}}\] done clear
C) \[25\sqrt{2}\]\[c{{m}^{2}}\] done clear
D) \[25\sqrt{3}\]\[c{{m}^{2}}\] done clear
View Solution play_arrowA) \[\left( 3\sqrt{3}-\frac{\pi }{2} \right)\]\[c{{m}^{2}}\] done clear
B) \[\left( \sqrt{3}-\frac{3\pi }{2} \right)\]\[c{{m}^{2}}\] done clear
C) \[4\left( \sqrt{3}-\frac{\pi }{2} \right)\]\[c{{m}^{2}}\] done clear
D) \[\left( \frac{\pi }{2}-\sqrt{3} \right)\]\[c{{m}^{2}}\] done clear
View Solution play_arrowA) 4 units done clear
B) \[2\sqrt{3}\]units done clear
C) \[2\sqrt{2}\]units done clear
D) \[3\sqrt{2}\]units done clear
View Solution play_arrowA) 42 \[c{{m}^{2}}\] done clear
B) 60 \[c{{m}^{2}}\] done clear
C) 84 \[c{{m}^{2}}\] done clear
D) 96 \[c{{m}^{2}}\] done clear
View Solution play_arrowA) 30 units done clear
B) 25 units done clear
C) 10 units done clear
D) 15 units done clear
View Solution play_arrowA) \[100\sqrt{3}\]\[c{{m}^{2}}\] done clear
B) \[8\sqrt{3}\]\[c{{m}^{2}}\] done clear
C) \[160\sqrt{3}\]\[c{{m}^{2}}\] done clear
D) 100 \[c{{m}^{2}}\] done clear
View Solution play_arrowquestion_answer13) If the side of a square is increased by 20%, then its area is increased by :
A) 25% done clear
B) 55% done clear
C) 44 % done clear
D) 56.25% done clear
View Solution play_arrowA) \[\frac{25}{4}\]sq.cm done clear
B) \[\frac{25}{\sqrt{3}}\]sq.cm done clear
C) \[\frac{9\sqrt{3}}{4}\]sq.cm done clear
D) \[25\sqrt{3}\]sq.cm done clear
View Solution play_arrowquestion_answer15) ABCD is a parallelogram. BC is produced to Q such that BC = CQ. Then
A) area \[\left( \Delta BCP \right)\] = area \[\left( \Delta DPQ \right)\] done clear
B) area \[\left( \Delta BCP \right)\] > area \[\left( \Delta DPQ \right)\] done clear
C) area \[\left( \Delta BCP \right)\] < area \[\left( \Delta DPQ \right)\] done clear
D) area \[\left( \Delta BCP \right)\] + area \[\left( \Delta DPQ \right)\] = area \[(\Delta \,BCD)\] done clear
View Solution play_arrowA) 4 : 1 done clear
B) 3 : 1 done clear
C) 3 : 2 done clear
D) 2 : 1 done clear
View Solution play_arrowA) 12 \[c{{m}^{2}}\] done clear
B) 8 \[c{{m}^{2}}\] done clear
C) 9 \[c{{m}^{2}}\] done clear
D) 10 \[c{{m}^{2}}\] done clear
View Solution play_arrowA) \[\frac{1}{2}\times area\text{ }of\text{ }\Delta PQR\] done clear
B) \[\frac{2}{3}\times area\text{ }of\text{ }\Delta PQR\] done clear
C) \[\frac{1}{4}\times area\text{ }of\text{ }\Delta PQR\] done clear
D) \[\frac{1}{8}\times area\text{ }of\text{ }\Delta PQR\] done clear
View Solution play_arrowA) \[\frac{\sqrt{2}}{3}\left( a+b+c \right)\] done clear
B) \[\frac{\sqrt{3}}{3}{{\left( a+b+c \right)}^{2}}\] done clear
C) \[\frac{\sqrt{3}}{3}\left( a+b+c \right)\] done clear
D) \[\frac{\sqrt{2}}{3}{{\left( a+b+c \right)}^{2}}\] done clear
View Solution play_arrowA) \[\frac{1}{2}\] done clear
B) \[\frac{2}{1}\] done clear
C) \[\frac{1}{3}\] done clear
D) \[\frac{2}{3}\] done clear
View Solution play_arrowA) 3 metre done clear
B) 5 metre done clear
C) 6 metre done clear
D) 2 metre done clear
View Solution play_arrowDirection: Each of the questions Mow consists of a questions followed by statements. You have to study the questions and the statements and decide which of the statement (s) is/are necessary to answer the question? |
(I) The perimeter of the field is 110 metres. |
(II) The length is 5 metres more than the width. |
(III) The ratio between length and width is 6:5 respectively. |
A) I and II only done clear
B) Any two of the three done clear
C) I, and either II or III only done clear
D) None of these done clear
View Solution play_arrowDirection: Each of the questions Mow consists of a questions followed by statements. You have to study the questions and the statements and decide which of the statement (s) is/are necessary to answer the question? |
(I) The length and breadth of the lawn are in the ratio of 2:1 respectively. |
(II) The width of the path is twenty times the length of the lawn. |
(III) The cost of gravelling the path @ Rs. 50 per nr is Rs. 4416. |
A) All I, II and III done clear
B) III, and either I or II done clear
C) I and III only done clear
D) II and III only done clear
View Solution play_arrowA) 8 cm and 10 cm done clear
B) 9 cm and 11 cm done clear
C) 10 cm and 12 cm done clear
D) 11 cm and 13 cm done clear
View Solution play_arrowA) \[m\text{/}n\] done clear
B) \[{{\left( m\text{/}n \right)}^{2}}\] done clear
C) \[{{\left( n\text{/}m \right)}^{2}}\] done clear
D) \[{{\left[ m/{{(n+m)}^{2}} \right]}^{2}}\] done clear
View Solution play_arrowA) 9:10 done clear
B) 8:9 done clear
C) 9:11 done clear
D) 11:9 done clear
View Solution play_arrowA) 15 cm done clear
B) 12cm done clear
C) 9 cm done clear
D) 8 cm done clear
View Solution play_arrowA) \[2\sqrt{3}\]sq units done clear
B) 4 sq units done clear
C) 3 sq units done clear
D) \[4\sqrt{3}\]sq units done clear
View Solution play_arrowA) 20 sq units done clear
B) 30 sq units done clear
C) 40 sq units done clear
D) none of the above done clear
View Solution play_arrowA) 160 sq. m done clear
B) \[147\sqrt{3}\]sq. m done clear
C) \[210\sqrt{3}\]sq. m. done clear
D) \[27\sqrt{3}\]sq. nz done clear
View Solution play_arrowYou need to login to perform this action.
You will be redirected in
3 sec