Solved papers for JEE Main & Advanced AIEEE Solved Paper-2004

done AIEEE Solved Paper-2004 Total Questions - 75

  • question_answer1) Let\[R=\{(1,3),(4,2),(2,4),(2,3),(3,1)\}\]be a relation on the set\[A=\{1,2,3,4\}\]. The relation R is

    A)
    a function       

    B)
    transitive                            

    C)
    not symmetric   

    D)
          reflexive

    View Answer play_arrow
  • question_answer2) The range of the function\[f(x){{=}^{7-x}}{{P}_{x-3}}\]is

    A)
    {1, 2, 3}      

    B)
           {1, 2, 3, 4, 5, 6}

    C)
    {1, 2, 3, 4}       

    D)
    {1, 2, 3, 4, 5}

    View Answer play_arrow
  • question_answer3) Let\[z,w\]be complex numbers such that \[\overline{z}=i\overline{w}=0\] and \[arg(zw)=\pi \]. Then, \[\arg (z)\] equals

    A)
    \[\frac{\pi }{4}\]              

    B)
                           \[\frac{\pi }{2}\]                              

    C)
    \[\frac{3\pi }{4}\]                            

    D)
                           \[\frac{5\pi }{4}\]

    View Answer play_arrow
  • question_answer4) If\[z=x-2y\]and\[{{z}^{1/3}}=p+iq,\]. Then \[{\left( \frac{x}{p}+\frac{y}{q} \right)}/{({{p}^{2}}+{{q}^{2}})}\;\] is equal to

    A)
    1             

    B)
                           \[-1\]                    

    C)
    2                             

    D)
           \[-2\]

    View Answer play_arrow
  • question_answer5) If\[|{{z}^{2}}-1|=|z{{|}^{2}}+1,\]then z lies on

    A)
    the real axis

    B)
    the imaginary axis

    C)
    a circle

    D)
    an ellipse

    View Answer play_arrow
  • question_answer6) Let\[A=\left[ \begin{matrix}    0 & 0 & -1  \\    0 & -1 & 0  \\    -1 & 0 & 0  \\ \end{matrix} \right].\]The only correct statement about the matrix A is

    A)
    A is a zero matrix

    B)
    \[A=(-\text{ }1)l,\]where\[l\]is a unit matrix

    C)
    \[{{A}^{-1}}\]does not exist

    D)
    \[{{A}^{2}}=l\]

    View Answer play_arrow
  • question_answer7) Let\[A=\left[ \begin{matrix}    1 & -1 & 1  \\    2 & 1 & -3  \\    1 & 1 & 1  \\ \end{matrix} \right]\]and\[10B=\left[ \begin{matrix}    4 & 2 & 2  \\    -5 & 0 & \alpha   \\    1 & -2 & 3  \\ \end{matrix} \right].\]If B is the inverse of matrix A, then a is

    A)
    -2                   

    B)
    1                             

    C)
    2                             

    D)
    5

    View Answer play_arrow
  • question_answer8) If\[{{a}_{1}},{{a}_{2}},{{a}_{3}}....,{{a}_{n}},...\]are in GP, then the value of the determinant \[\left| \begin{matrix}    \log {{a}_{n}} & \log {{a}_{n+1}} & \log {{a}_{n+2}}  \\    \log \,\,{{a}_{n+3}} & \log {{a}_{n+4}} & \log {{a}_{n+5}}  \\    \log {{a}_{n+6}} & \log {{a}_{n+7}} & \log {{a}_{n+8}}  \\ \end{matrix} \right|,\] is

    A)
    0       

    B)
                                           1                             

    C)
    2                             

    D)
    \[-2\]

    View Answer play_arrow
  • question_answer9) Let two numbers have arithmetic mean 9 and geometric mean 4. Then, these numbers are the roots of the quadratic equation

    A)
    \[{{x}^{2}}+18x+16=0\]

    B)
    \[{{x}^{2}}-18x+16=0\]

    C)
    \[{{x}^{2}}+18x-16=0\]

    D)
    \[{{x}^{2}}+18x-16=0\]

    View Answer play_arrow
  • question_answer10) If\[(1-p)\]is a root of quadratic equation\[{{x}^{2}}+px\] \[+(1-p)=0,\]then its roots are

    A)
    \[0,1\]                  

    B)
           \[-1,1\]                

    C)
           \[0,-1\]                

    D)
           \[-1,2\]

    View Answer play_arrow
  • question_answer11) Let\[S(K)=1+3+5+...+(2K-1)=3+{{K}^{2}}.\]Then, which of the following is true?

    A)
    S(1) is correct

    B)
    \[S(K)\Rightarrow S(K+1)\]

    C)
    \[S(K)S(K+1)\]

    D)
    Principle of mathematical induction can be used to prove the formula

    View Answer play_arrow
  • question_answer12) How many ways are there to arrange the letters in the word GARDEN with the vowels in alphabetical order?

    A)
    120   

    B)
                           240        

    C)
           360        

    D)
           480

    View Answer play_arrow
  • question_answer13) The number of ways of distributing 8 identical balls in 3 distinct boxes, so that none of the boxes is empty, is

    A)
    5      

    B)
                           21          

    C)
                           \[{{3}^{8}}\]     

    D)
           \[^{8}{{C}_{3}}\]

    View Answer play_arrow
  • question_answer14) If one root of the equation\[{{x}^{2}}+px+12=0\]is 4, while the equation\[{{x}^{2}}+px+q=0\]has equal roots, then the value of 'q' is

    A)
    \[\frac{49}{4}\]                

    B)
           12          

    C)
           3             

    D)
           4

    View Answer play_arrow
  • question_answer15) The coefficient of the middle term in the binomial expansion in powers of\[x\]of\[{{(1+\alpha x)}^{4}}\] and of\[{{(1-ax)}^{6}}\]is the same, if a equals

    A)
    \[-\frac{5}{3}\]                 

    B)
           \[\frac{10}{3}\]                

    C)
           \[-\frac{3}{10}\]               

    D)
           \[\frac{3}{5}\]

    View Answer play_arrow
  • question_answer16) The coefficient of\[{{x}^{n}}\]in the expansion of \[(1+x){{(1-x)}^{n}}\]is

    A)
    \[(n-1)\]              

    B)
           \[{{(-1)}^{n}}(1-n)\]       

    C)
           \[{{(-1)}^{n-1}}{{(n-1)}^{2}}\]

    D)
           \[{{(-1)}^{n-1}}n\]

    View Answer play_arrow
  • question_answer17) If\[{{S}_{n}}=\sum\limits_{r=0}^{n}{\frac{1}{^{n}{{C}_{r}}}}\]and\[{{t}_{n}}=\sum\limits_{r=0}^{n}{\frac{r}{^{n}{{C}_{r}}}}\]then\[\frac{{{t}_{n}}}{{{S}_{n}}}\]is equal to

    A)
    \[\frac{n}{2}\]                  

    B)
                           \[\frac{n}{2}-1\]              

    C)
           \[n-1\]

    D)
           \[\frac{2n-1}{2}\]

    View Answer play_arrow
  • question_answer18) Let\[{{T}_{r}}\]be the rth term of an AP whose first term is a and common difference is d. If for some positive integers \[m,n,m\ne n,{{T}_{m}}=\frac{1}{n}\]and\[{{T}_{n}}=\frac{1}{m},\]then\[a-d\]equals

    A)
    0     

    B)
                          1             

    C)
           \[\frac{1}{mn}\]              

    D)
           \[\frac{1}{m}+\frac{1}{n}\]

    View Answer play_arrow
  • question_answer19) The sum of the first\[n\]terms of the series \[{{1}^{2}}+{{2.2}^{2}}+{{3}^{2}}+{{2.4}^{2}}+{{5}^{2}}+{{2.6}^{2}}+....\]is \[\frac{n{{(n+1)}^{2}}}{2},\] when n is even. When n is odd, the sum is

    A)
    \[\frac{3n(n+1)}{2}\]     

    B)
           \[\frac{{{n}^{2}}(n+1)}{2}\]        

    C)
           \[\frac{n{{(n+1)}^{2}}}{4}\]        

    D)
           \[{{\left[ \frac{n(n+1)}{4} \right]}^{2}}\]

    View Answer play_arrow
  • question_answer20) The sum of series\[\frac{1}{2!}+\frac{1}{4!}+\frac{1}{6!}+.....\]is

    A)
    \[\frac{({{e}^{2}}-1)}{2}\]

    B)
                           \[\frac{{{(e-1)}^{2}}}{2e}\]         

    C)
           \[\frac{({{e}^{2}}-1)}{2e}\]         

    D)
           \[\frac{({{e}^{2}}-2)}{e}\]

    View Answer play_arrow
  • question_answer21) Let\[\alpha ,\beta \]be such that\[\pi <\alpha -\beta <3\pi .\].If\[\sin \alpha +\sin \beta =-\frac{21}{65}\]and\[\cos \alpha +\cos \beta =-\frac{27}{65},\]then the value of\[\cos \left( \frac{\alpha -\beta }{2} \right)\]is

    A)
    \[-\frac{3}{\sqrt{130}}\]               

    B)
           \[\frac{3}{\sqrt{130}}\] 

    C)
           \[\frac{6}{65}\]

    D)
                           \[-\frac{6}{65}\]

    View Answer play_arrow
  • question_answer22) If\[u=\sqrt{{{a}^{2}}{{\cos }^{2}}\theta +{{b}^{2}}{{\sin }^{2}}\theta }\] \[+\sqrt{{{a}^{2}}{{\sin }^{2}}\theta +{{b}^{2}}{{\cos }^{2}}\theta },\] then the difference between the maximum and minimum values of\[{{u}^{2}}\]is given by

    A)
    \[2({{a}^{2}}+{{b}^{2}})\]  

    B)
           \[2\sqrt{{{a}^{2}}+{{b}^{2}}}\]  

    C)
           \[{{(a+b)}^{2}}\]          

    D)
           \[{{(a-b)}^{2}}\]

    View Answer play_arrow
  • question_answer23) The sides of a triangle are\[\sin \alpha ,\text{ }\cos \alpha \]and\[\sqrt{1+\sin \alpha \cos \alpha }\]for some\[0<\alpha <\frac{\pi }{2}\]. Then, the greatest angle of the triangle is

    A)
    \[60{}^\circ \]  

    B)
                                           \[90{}^\circ \]                   

    C)
           \[120{}^\circ \]                 

    D)
           \[150{}^\circ \]

    View Answer play_arrow
  • question_answer24) A person standing on the bank of a river observes that the angle of elevation of the top of a tree on the opposite bank of the river is \[60{}^\circ \]and when he retires 40 m away from the tree, the angle of elevation becomes\[30{}^\circ \]. The breadth of the river is

    A)
    20 m 

    B)
                           30 m     

    C)
           40 m     

    D)
           60 m

    View Answer play_arrow
  • question_answer25) If \[f:R\to S,\] defined by \[f(x)=\sin x-\sqrt{3}\cos x+1,\]is onto, then the interval of S is

    A)
    \[[0,\text{ }3]\]  

    B)
                           \[[-1,\text{ }1]\]              

    C)
           \[[0,\,1]\]           

    D)
           \[[-1,\text{ }3]\]

    View Answer play_arrow
  • question_answer26) The graph of the function\[y=f(x)\]is symmetrical about the line\[x=2,\]then

    A)
    \[f(x+2)=f(x-2)\] 

    B)
          \[f(2+x)=f(2-x)\]

    C)
    \[f(x)=f(-x)\]    

    D)
       \[f(x)=-f(-x)\]

    View Answer play_arrow
  • question_answer27) The domain of the function \[f(x)=\frac{si{{n}^{-1}}(x-3)}{\sqrt{9-{{x}^{2}}}}\]is

    A)
    [2, 3]  

    B)
                           [2, 3)     

    C)
           [1, 2]     

    D)
           [1, 2)

    View Answer play_arrow
  • question_answer28) If\[\underset{x\to \infty }{\mathop{\lim }}\,{{\left( 1+\frac{a}{x}+\frac{b}{{{x}^{2}}} \right)}^{2x}}={{e}^{2}},\]then the values of a and b are

    A)
    \[a\in R,b\in R\]   

    B)
           \[a=1,b\in R\]   

    C)
           \[a\in R,b=2\]   

    D)
           \[a=1,b=2\]

    View Answer play_arrow
  • question_answer29) Let\[f(x)=\frac{1-\tan x}{4x-\pi },x\ne \frac{\pi }{4},x\in \left[ 0,\frac{\pi }{2} \right]\]. If f(x) is continuous in\[\left[ 0,\frac{\pi }{2} \right]\],then\[f\left( \frac{\pi }{4} \right)\]is

    A)
    1   

    B)
                           1/2   

    C)
    \[-1/2\]               

    D)
           \[-1\]

    View Answer play_arrow
  • question_answer30) If\[x={{e}^{y+{{e}^{y+....\infty }}}},x>0,\]then\[\frac{dy}{dx}\]is

    A)
    \[\frac{x}{1+x}\]

    B)
                           \[\frac{1}{x}\]                                   

    C)
    \[\frac{1-x}{x}\]               

    D)
           \[\frac{1+x}{x}\]

    View Answer play_arrow
  • question_answer31) A point on the parabola\[{{y}^{2}}=18x\]at which the ordinate increases at twice the rate of the abscissa, is

    A)
    (2, 4)                     

    B)
    (2, -4)   

    C)
           \[\left( -\frac{9}{8},\frac{9}{2} \right)\]        

    D)
           \[\left( \frac{9}{8},\frac{9}{2} \right)\]

    View Answer play_arrow
  • question_answer32) A function\[y=f(x)\]has a second order derivative\[f'\,'=6(x-1)\]. If its graph passes through the point (2, 1) and at that point, the tangent to the graph is\[y=3x-5,\]then the function is

    A)
    \[{{(x-1)}^{2}}\]       

    B)
                           \[{{(x-1)}^{3}}\]               

    C)
           \[{{(x+1)}^{3}}\]         

    D)
           \[{{(x+1)}^{2}}\]

    View Answer play_arrow
  • question_answer33) The normal to the curve\[x=a(1+\cos \theta ),\] \[y=a\sin \theta \]at\['\theta '\]always passes through the fixed point

    A)
    (a, 0)  

    B)
                           (0, a)     

    C)
           (0, 0)     

    D)
           (a, a)

    View Answer play_arrow
  • question_answer34) If\[2a+3b+6c=0,\] then atleast one root of the equation\[a{{x}^{2}}+bx+c=0\]lies in the interval

    A)
    (0, 1)                     

    B)
    (1, 2)     

    C)
           (2, 3)     

    D)
           (1, 3)

    View Answer play_arrow
  • question_answer35) \[\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{\frac{1}{n}{{e}^{r/n}}}\]is

    A)
    \[e\]    

    B)
                           \[e-1\]                 

    C)
           \[1-e\]                 

    D)
           \[e+1\]

    View Answer play_arrow
  • question_answer36) If \[\int{\frac{\sin x}{\sin (x-\alpha )}}dx\] \[=Ax+B\text{ }\log \text{ }\sin (x-\alpha )+C,\]then value of \[(A,\text{ }B)\]is

    A)
    \[(sin\text{ }\alpha ,\text{ }cos\text{ }\alpha )\]     

    B)
           (b)\[(cos\text{ }\alpha ,\text{ }sin\text{ }\alpha \text{)}\]

    C)
           \[(-\sin \text{ }\alpha ,\text{ }\cos \text{ }\alpha )\]

    D)
           \[(-\cos \text{ }\alpha ,\text{ }\sin \text{ }\alpha )\]

    View Answer play_arrow
  • question_answer37) \[\int{\frac{dx}{\cos x-\sin x}}\]is equal to

    A)
    \[\frac{1}{\sqrt{2}}\log \left| \tan \left( \frac{x}{2}-\frac{\pi }{8} \right) \right|+C\]

    B)
    \[\frac{1}{\sqrt{2}}\log \left| \cot \left( \frac{x}{2} \right) \right|+C\]

    C)
    \[\frac{1}{\sqrt{2}}\log \left| \tan \left( \frac{x}{2}-\frac{3\pi }{8} \right) \right|+C\]

    D)
    \[\frac{1}{\sqrt{2}}\log \left| \tan \left( \frac{x}{2}+\frac{3\pi }{8} \right) \right|+C\]

    View Answer play_arrow
  • question_answer38) The value of \[\int_{-2}^{3}{|1-{{x}^{2}}|}dx\]is

    A)
    \[\frac{28}{3}\]                                

    B)
    \[\frac{14}{3}\]                

    C)
           \[\frac{7}{3}\]                   

    D)
           \[\frac{1}{3}\]

    View Answer play_arrow
  • question_answer39) The value of\[\int_{0}^{\pi /2}{\frac{{{(\sin x+\cos x)}^{2}}}{\sqrt{1+\sin 2x}}}dx\]is

    A)

    B)
                           1             

    C)
                           2             

    D)
           3

    View Answer play_arrow
  • question_answer40) If\[\int_{0}^{\pi }{x}f(\sin x)dx=A\int_{0}^{\pi /2}{f(\sin x)}dx,\]then A is equal to

    A)
    0      

    B)
                           \[\pi \]                 

    C)
           \[\frac{\pi }{4}\]              

    D)
           \[2\,\pi \]

    View Answer play_arrow
  • question_answer41) If\[f(x)=\frac{{{e}^{x}}}{1+{{e}^{x}}},{{I}_{1}}=\int_{f(-a)}^{f(a)}{x}g\{x(1-x)\}dx\]and\[{{I}_{2}}=\int_{f(-a)}^{f(a)}{g\{x(1-x)\}dx},\] then the value of\[\frac{{{I}_{2}}}{{{I}_{1}}}\]is

    A)
    2      

    B)
                           \[-3\]                    

    C)
           \[-1\]                    

    D)
           1

    View Answer play_arrow
  • question_answer42) The area of the region bounded by the curves \[y=|x-2|,x=1,x=3\]and the X-axis is

    A)
    1       

    B)
                           2             

    C)
           3             

    D)
           4

    View Answer play_arrow
  • question_answer43) The differential equation for the family of curves\[{{x}^{2}}+{{y}^{2}}-2\text{ }ay=0,\]where a is an arbitrary constant, is

    A)
    \[2({{x}^{2}}-{{y}^{2}})y'=xy\]   

    B)
    \[2({{x}^{2}}+{{y}^{2}})y'=xy\]

    C)
           \[({{x}^{2}}-{{y}^{2}})y'=2xy\]

    D)
           \[({{x}^{2}}+{{y}^{2}})y'=2xy\]

    View Answer play_arrow
  • question_answer44) The solution of the differential equation \[ydx+(x+{{x}^{2}}y)dy=0\]is

    A)
    \[-\frac{1}{xy}=C\]                         

    B)
    \[-\frac{1}{xy}+\log y=C\]

    C)
           \[\frac{1}{xy}+\log y=C\]  

    D)
           \[\log y=Cx\]

    View Answer play_arrow
  • question_answer45) Let A (2, - 3) and B (- 2,1) be vertices of a\[\Delta ABC\] If the centroid of this triangle moves on the line \[2x+3y=1,\]then the locus of the vertex C is the line

    A)
    \[2x+3y=9\]       

    B)
    \[2x-3y=7\]

    C)
    \[3x+2y=5\]       

    D)
           \[3x-2y=3\]

    View Answer play_arrow
  • question_answer46) The equation of the straight line passing through the point (4, 3) and making intercepts on the coordinate axes whose sum is -1, is

    A)
    \[\frac{x}{2}+\frac{y}{3}=-1\]and\[\frac{x}{-2}+\frac{y}{1}=-1\]

    B)
    \[\frac{x}{2}-\frac{y}{3}=-1\]and\[\frac{x}{-2}+\frac{y}{1}=-1\]

    C)
    \[\frac{x}{2}+\frac{y}{3}=1\]and\[\frac{x}{-2}+\frac{y}{1}=1\]

    D)
    \[\frac{x}{2}-\frac{y}{3}\,=1\] and \[\frac{x}{-2}\,+\frac{y}{1}\,=1\]

    View Answer play_arrow
  • question_answer47) If the sum of the slopes of the lines given by \[{{x}^{2}}-2cxy-7{{y}^{2}}=0\]is four times their product, then c has the value

    A)
    1                             

    B)
           \[-1\]   

    C)
           2                             

    D)
           \[-2\]

    View Answer play_arrow
  • question_answer48) If  one  of  the  lines   given  by\[6{{x}^{2}}-xy+4c{{y}^{2}}=0\]is\[3x+4y=0,\]then c equals

    A)
    1             

    B)
           \[-1\]                    

    C)
           3                             

    D)
           \[-3\]

    View Answer play_arrow
  • question_answer49) If a circle passes through the point [a, b) and cuts the circle\[{{x}^{2}}+{{y}^{2}}=4\]orthogonally, then the locus of its centre is

    A)
    \[2ax+2by+({{a}^{2}}+{{b}^{2}}+4)=0\]

    B)
    \[2\,ax\,+2by-({{a}^{2}}+{{b}^{2}}\,+4)=0\]

    C)
    \[2ax-2by+({{a}^{2}}+{{b}^{2}}+4)=0\]

    D)
    \[2ax-2by-({{a}^{2}}+{{b}^{2}}+4)=0\]

    View Answer play_arrow
  • question_answer50) A variable circle passes through the fixed point \[A(p,\text{ }q)\]and touches x-axis. The locus of the other end of the diameter through A is

    A)
    \[{{(x-p)}^{2}}=4qy\]     

    B)
    \[{{(x-q)}^{2}}=4qy\]

    C)
                           \[{{(y-p)}^{2}}=4qx\]     

    D)
    \[{{(y-q)}^{2}}=4px\]

    View Answer play_arrow
  • question_answer51) If the lines\[2x+3y+1=0\]and\[3x-y-4=0\]lie along diameters of a circle of circumference\[10\pi ,\]then the equation of the circle is

    A)
    \[{{x}^{2}}+{{y}^{2}}-2x+2y-23=0\]

    B)
    \[{{x}^{2}}+{{y}^{2}}-2x-2y-23=0\]

    C)
    \[{{x}^{2}}+{{y}^{2}}+2x+2y-23=0\]

    D)
    \[{{x}^{2}}+{{y}^{2}}+2x-2y-23=0\]

    View Answer play_arrow
  • question_answer52) The intercept on the line\[y=x\]by the circle\[{{x}^{2}}+{{y}^{2}}-2x=0\]is AB. Equation of the circle on AB as a diameter is

    A)
    \[{{x}^{2}}+{{y}^{2}}-x-y=0\]     

    B)
    \[{{x}^{2}}+{{y}^{2}}-x+y=0\]

    C)
           \[{{x}^{2}}+{{y}^{2}}+x+y=0\]

    D)
          \[{{x}^{2}}+{{y}^{2}}+x-y=0\]

    View Answer play_arrow
  • question_answer53) If\[a\ne 0\]and the line\[2bx+3cy+4d=0\]passes through the points of intersection of the parabolas\[{{y}^{2}}=4\text{ }ax\]and\[{{x}^{2}}=4\text{ }ay,\]then

    A)
    \[{{d}^{2}}+{{(2b+3c)}^{2}}=0\]

    B)
    \[{{d}^{2}}+{{(3b+2c)}^{2}}=0\]

    C)
    \[{{d}^{2}}+{{(2b-3c)}^{2}}=0\]

    D)
    \[{{d}^{2}}+{{(3b-2c)}^{2}}=0\]

    View Answer play_arrow
  • question_answer54) The eccentricity of an ellipse with its centre at the origin, is\[\frac{1}{2}\]. If one of the directories is\[x=4,\]then the equation of the ellipse is

    A)
    \[3{{x}^{2}}+4{{y}^{2}}=1\]         

    B)
    \[3{{x}^{2}}+4{{y}^{2}}=12\]

    C)
           \[4{{x}^{2}}+3{{y}^{2}}=12\]   

    D)
           \[4{{x}^{2}}+3{{y}^{2}}=1\]

    View Answer play_arrow
  • question_answer55) A line makes the same angle\[\theta \]with each of the x and z-axes. If the angle\[\beta ,\]which it makes with y-axis, is such that\[{{\sin }^{2}}\beta =3{{\sin }^{2}}\theta ,\]then\[\cos \theta \]equals

    A)
    \[\frac{2}{3}\]  

    B)
                                           \[\frac{1}{5}\]                   

    C)
    \[\frac{3}{5}\]                                   

    D)
    \[\frac{2}{5}\]

    View Answer play_arrow
  • question_answer56) Distance between two parallel planes \[2x+y+2z=8\]and\[4x+2y+4z+5=0\]is

    A)
    \[\frac{3}{2}\]   

    B)
                           \[\frac{5}{2}\]                                   

    C)
    \[\frac{7}{2}\]                   

    D)
           \[\frac{9}{2}\]

    View Answer play_arrow
  • question_answer57) A line with direction cosines proportional to 2,1,2 meets each of the lines\[x=y+a=z\]and \[x+a=2y=2z\]. The coordinates of each of the points of intersection are given by

    A)
    (3a, 3a, 3a), (a, a, a)     

    B)
                 (3a, 2a, 3a), (a, a, a)

    C)
    (3a, 2a, 3a), (a, a, 2a)

    D)
    (2a, 3a, 3a), (2a, a, a)

    View Answer play_arrow
  • question_answer58) If the straight lines \[x=1+s,y=-3-\lambda s,\] \[z=1+\lambda \,s\]and\[x=\frac{t}{2},y=1+t,z=2-t,\]with parameters s and t respectively, are coplanar, then\[\lambda ,\]equals

    A)
    \[-2\]                    

    B)
           \[-1\]                    

    C)
           \[-\frac{1}{2}\]                 

    D)
           0

    View Answer play_arrow
  • question_answer59) The intersection of the spheres \[{{x}^{2}}+{{y}^{2}}+{{z}^{2}}+7x-2y-z=13\] and \[{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-3x+3y+4z=8\] is the same as the intersection of one of the sphere and the plane

    A)
    \[x-y-z=1\]         

    B)
    \[x-2y-z=1\]

    C)
                           \[x-y-2z=1\]   

    D)
           \[2x-y-z=1\]

    View Answer play_arrow
  • question_answer60) Let a, b and c be three non-zero vectors such that no two of these are collinear. If the vector \[a+2b\]is collinear with c and\[b+3c\]is collinear with a\[(\lambda \]being some non-zero scalar), then \[a+2b+6c\]equals

    A)
    \[\lambda a\]

    B)
                           \[\lambda b\]                   

    C)
           \[\lambda c\]   

    D)
           0

    View Answer play_arrow
  • question_answer61) A particle is acted upon by constant forces \[4\hat{i}+\hat{j}-3\hat{k}\]and\[3\hat{i}+\hat{j}-\hat{k}\]which displace it from a point\[\hat{i}+2\hat{j}-3\hat{k}\]to the point \[5\hat{i}+4\hat{j}+\hat{k}\]. The work done in standard units by the forces is given by

    A)
    40     

    B)
                           30                          

    C)
           25                          

    D)
           15

    View Answer play_arrow
  • question_answer62) If a, b, c are non-coplanar vectors and\[\lambda \]is a real number, then the vectors\[a+2b+3c,\lambda b+4c\]and\[(2\lambda -1)c\]are non-coplanar for

    A)
    all values of\[\lambda \]

    B)
    all except one value of \[\lambda \]

    C)
    all except two values of \[\lambda \]

    D)
    no value of\[\lambda \]

    View Answer play_arrow
  • question_answer63) Let\[u,v,w\]be such that\[|u|=1,|v|=2,\]\[|w|=3.\]If the projection v along u is equal to that of w along u and\[v,w\]are perpendicular to each other, then\[|u-v+w|\]equals

    A)
    2             

    B)
                           \[\sqrt{7}\]                        

    C)
           \[\sqrt{14}\]                      

    D)
           14

    View Answer play_arrow
  • question_answer64) Let a,b and c be non-zero vectors such that \[(a\times b)\times c=\frac{1}{3}|b||c|a.\]If\[\theta \]is the acute angle between the vectors b and c, then\[\sin \theta \]equals

    A)
    \[\frac{1}{3}\]      

    B)
                           \[\frac{\sqrt{2}}{3}\]    

    C)
           \[\frac{2}{3}\]                   

    D)
           \[\frac{2\sqrt{2}}{3}\]

    View Answer play_arrow
  • question_answer65) Consider the following statements (1) Mode can be computed from histogram. (2) Median is not independent of change of scale. (3) Variance is independent of change of origin and scale. (4) Which of these is/are correct?

    A)
    Only (1)               

    B)
    Only (2)               

    C)
           Only (1) and (2)                

    D)
    (1), (2) and (3)

    View Answer play_arrow
  • question_answer66) In a series of\[2n\]observations, half of them equal\[a\]and remaining half equal\[-a\]. If the standard deviation of the observations is 2, then \[|a|\] equals

    A)
    \[\frac{1}{n}\]                  

    B)
           \[\sqrt{2}\]                        

    C)
    \[2\]                     

    D)
           \[\frac{\sqrt{2}}{n}\]

    View Answer play_arrow
  • question_answer67) The probability that A speaks truth is 4/5 while this probability for B is 3/4. The probability that they contradict each other when asked to speak on a fact, is

    A)
    \[\frac{3}{20}\]   

    B)
                           \[\frac{1}{5}\]                   

    C)
           \[\frac{7}{20}\]                

    D)
           \[\frac{4}{5}\]

    View Answer play_arrow
  • question_answer68) A random variable X has the probability distribution
    \[x\] 1 2 3 4 5 6 7 8
    \[p(x)\] 0.15 0.23 0.12 0.10 0.20 0.08 0.07 0.05
    For the events E = {X is a prime number} and\[F=\{X<4\},\]the probability\[P(E\cup F)\]is

    A)
    0.87  

    B)
                          0.77       

    C)
           0.35       

    D)
           0.50

    View Answer play_arrow
  • question_answer69) The mean and the variance of a binomial distribution are 4 and 2, respectively. Then, the probability of 2 successes is

    A)
    \[\frac{37}{256}\]            

    B)
           \[\frac{219}{256}\]                         

    C)
    \[\frac{128}{256}\]                         

    D)
           \[\frac{28}{256}\]

    View Answer play_arrow
  • question_answer70) With two forces acting at a point, the maximum effect is obtained when their resultant is 4N. If they act at right angles, then their resultant is 3N. Then, the forces are

    A)
    \[(2+\sqrt{2})N\]and\[(2-\sqrt{2})N\]

    B)
    \[(2+\sqrt{3})N\]and\[(2-\sqrt{3})N\]

    C)
    \[\left( 2+\frac{1}{2}\sqrt{2} \right)N\]and \[\left( 2-\frac{1}{2}\sqrt{2} \right)N\]

    D)
    \[\left( 2+\frac{1}{2}\sqrt{3} \right)N\]and\[\left( 2-\frac{1}{2}\sqrt{3} \right)N\]            

    View Answer play_arrow
  • question_answer71) In a right angled \[\Delta ABC,\,\,\angle A={{90}^{\text{o}}}\] and sides a,b,c are respectively, 5 cm, 4 cm and 3 cm. If a force F has moments 0, 9 and 16 (in N cm) units respectively about vertices A, B and C, the magnitude of F is

    A)
    3                             

    B)
           4                             

    C)
    5                             

    D)
           9

    View Answer play_arrow
  • question_answer72) Three forces P, Q and R acting along\[IA,IB\]and \[IC,\]where\[I\]is the incentre of a\[\Delta ABC,\]are in equilibrium. Then, P : Q : R is

    A)
    \[\cos \frac{A}{2}:\cos \frac{B}{2}:\cos \frac{C}{2}\]

    B)
    \[\sin \frac{A}{2}:\sin \frac{B}{2}:\sin \frac{C}{2}\]

    C)
    \[\sec \frac{A}{2}:\sec \frac{B}{2}:\sec \frac{C}{2}\]

    D)
    \[\cos ec\,\frac{A}{2}:\,\,\cos ec\,\frac{B}{2}\,:\,\cos ec\,\frac{C}{2}\]

    View Answer play_arrow
  • question_answer73) A particle moves towards East from a point A to a point B at the rate of 4 km/h and then towards North from B to C at rate of 5 km/h. If AB = 12 km and BC = 5 km, then its average speed for its journey from A to C and resultant average velocity direct from A to C are respectively

    A)
    \[\frac{17}{14}km/h\text{ }and\frac{13}{4}km/h\]

    B)
    \[\frac{13}{4}km/h\text{ }and\frac{17}{4}km/h\]

    C)
    \[\frac{17}{9}km/h\text{ }and\frac{13}{9}km/h\]

    D)
    \[\frac{13}{9}km/h\text{ }and\frac{17}{9}km/h\]

    View Answer play_arrow
  • question_answer74) A velocity 1/4 m/s is resolved into two components along OA and OB making angles \[30{}^\circ \]and\[45{}^\circ \]respectively with the given velocity, Then, the component along OB is

    A)
    \[\frac{1}{8}m/s\]           

    B)
           \[\frac{1}{4}(\sqrt{3}-1)m/s\]    

    C)
    \[\frac{1}{4}m/s\]           

    D)
           \[\frac{1}{8}(\sqrt{6}-\sqrt{2})m/s\]

    View Answer play_arrow
  • question_answer75) If\[{{t}_{1}}\]and\[{{t}_{2}}\]are the times of flight of two particles having the same initial velocity u and range R on the horizontal, then\[t_{1}^{2}+t_{2}^{2}\]is equal to

    A)
    \[{{u}^{2}}/g\]                                  

    B)
    \[4{{u}^{2}}/{{g}^{2}}\]                

    C)
    \[{{u}^{2}}/2g\]         

    D)
           1

    View Answer play_arrow

Study Package

AIEEE Solved Paper-2004
 

   


You need to login to perform this action.
You will be redirected in 3 sec spinner