Category : JEE Main & Advanced
(1) \[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \frac{x+y}{1-xy} \right)\];
If \[x>0,y>0\] and \[xy<1\]
(2) \[{{\tan }^{-1}}x+{{\tan }^{-1}}y=\pi +{{\tan }^{-1}}\left( \frac{x+y}{1-xy} \right)\];
If \[x>0,\,y>0\] and \[xy>1\]
(3) \[{{\tan }^{-1}}x+{{\tan }^{-1}}y=-\pi +{{\tan }^{-1}}\left( \frac{x+y}{1-xy} \right)\];
If \[x<0,\,y<0\] and \[xy>1\]
(4) \[{{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\left( \frac{x-y}{1+xy} \right)\];
If \[xy>-1\]
(5) \[{{\tan }^{-1}}x-{{\tan }^{-1}}y=\pi +{{\tan }^{-1}}\left( \frac{x-y}{1+xy} \right)\] ;
If \[x>0,\,y<0\] and \[xy<-1\]
(6) \[{{\tan }^{-1}}x-{{\tan }^{-1}}y=-\pi +{{\tan }^{-1}}\left( \frac{x-y}{1+xy} \right)\];
If \[x<0,\,y>0\] and \[xy<-1\]
(7) \[{{\tan }^{-1}}x+{{\tan }^{-1}}y+{{\tan }^{-1}}z={{\tan }^{-1}}\left[ \frac{x+y+z-xyz}{1-xy-yz-zx} \right]\]
(8) \[{{\tan }^{-1}}{{x}_{1}}+{{\tan }^{-1}}{{x}_{2}}+..........+{{\tan }^{-1}}{{x}_{n}}\] \[={{\tan }^{-1}}\left[ \frac{{{S}_{1}}-{{S}_{3}}+{{S}_{5}}-...........}{1-{{S}_{2}}+{{S}_{4}}-{{S}_{6}}+........} \right]\]
where \[{{S}_{k}}\] denotes the sum of the products of \[{{x}_{1}},\,{{x}_{2}},........,{{x}_{n}}\] taken k at a time.
(9) \[{{\cot }^{-1}}x+{{\cot }^{-1}}y={{\cot }^{-1}}\frac{xy-1}{y+x}\]
(10) \[{{\cot }^{-1}}x-{{\cot }^{-1}}y={{\cot }^{-1}}\frac{xy+1}{y-x}\]
(11) \[{{\sin }^{-1}}x+{{\sin }^{-1}}y={{\sin }^{-1}}\{x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}}\}\];
If \[-1\le x,\,y\le 1\]and\[{{x}^{2}}+{{y}^{2}}\le 1\] or if \[xy<0\] and \[{{x}^{2}}+{{y}^{2}}>1\]
(12) \[{{\sin }^{-1}}x+{{\sin }^{-1}}y=\pi -{{\sin }^{-1}}\{x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}}\},\]
If \[0<x\],\[y\le 1\] and \[{{x}^{2}}+{{y}^{2}}>1\]
(13) \[{{\sin }^{-1}}x+{{\sin }^{-1}}y=-\pi -{{\sin }^{-1}}\{x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}}\},\]
If \[-1\le x;\,y<0\] and \[{{x}^{2}}+{{y}^{2}}>1\]
(14) \[{{\sin }^{-1}}x-{{\sin }^{-1}}y={{\sin }^{-1}}\{x\sqrt{1-{{y}^{2}}}-y\sqrt{1-{{x}^{2}}}\},\]
If \[-1\le x;\,y\le 1\]and\[{{x}^{2}}+{{y}^{2}}\le 1\]if or \[xy>0\] and\[{{x}^{2}}+{{y}^{2}}>1\].
(15) \[{{\sin }^{-1}}x-{{\sin }^{-1}}y=\pi -{{\sin }^{-1}}\{x\sqrt{1-{{y}^{2}}}-y\sqrt{1-{{x}^{2}}}\},\]
If \[0<x\le 1,\,-1\le y<0\] and \[{{x}^{2}}+{{y}^{2}}>1\].
(16) \[{{\sin }^{-1}}x-{{\sin }^{-1}}y=-\pi -{{\sin }^{-1}}\{x\sqrt{1-{{y}^{2}}}-y\sqrt{1-{{x}^{2}}}\},\]
If \[-1\le x<0,\,0<y\le 1\] and \[{{x}^{2}}+{{y}^{2}}>1\].
(17) \[{{\cos }^{-1}}x+{{\cos }^{-1}}y={{\cos }^{-1}}\{xy-\sqrt{1-{{x}^{2}}}.\sqrt{1-{{y}^{2}}}\}\],
If \[-1\le x,\,y\le 1\] and \[x+y\ge 0\].
(18) \[{{\cos }^{-1}}x+{{\cos }^{-1}}y=2\pi -{{\cos }^{-1}}\{xy-\sqrt{1-{{x}^{2}}}\sqrt{1-{{y}^{2}}}\}\],
If \[-1\le x,\,y\le 1\] and \[x+y\le 0\]
(19) \[{{\cos }^{-1}}x-{{\cos }^{-1}}y={{\cos }^{-1}}\{xy+\sqrt{1-{{x}^{2}}}\sqrt{1-{{y}^{2}}}\},\]
If \[-1\le x,y\le 1,\] and \[x\le y\].
(20) \[{{\cos }^{-1}}x-{{\cos }^{-1}}y=-{{\cos }^{-1}}\{xy+\sqrt{1-{{x}^{2}}}\sqrt{1-{{y}^{2}}}\},\]
If \[-1\le y\le 0,\] \[0<x\le 1\] and \[x\ge y\].
You need to login to perform this action.
You will be redirected in
3 sec