-
question_answer1)
If one angle of a triangle is equal to half of the sum of the other two equal angles, then the triangle is:
A)
Isosceles done
clear
B)
Scalene done
clear
C)
Equilateral done
clear
D)
Right angled done
clear
View Solution play_arrow
-
question_answer2)
In the figure given below, G is the centroid of the equilateral triangle ABC, If \[\mathbf{AB}=\mathbf{6}\] cm, then AG is equal to
A)
\[\sqrt{3}\]cm done
clear
B)
\[3\sqrt{2}\]cm. done
clear
C)
\[\frac{3\sqrt{3}}{2}\] cm done
clear
D)
\[2\sqrt{3}\]cm. done
clear
View Solution play_arrow
-
question_answer3)
The lengths of the sides of a triangle is x, y mid z respectively. If \[{{\mathbf{x}}^{\mathbf{2}}}\mathbf{+}{{\mathbf{y}}^{\mathbf{2}}}\mathbf{+}{{\mathbf{z}}^{\mathbf{2}}}\mathbf{=xy+yz+xz,}\] then the triangle is:
A)
Isosceles done
clear
B)
Equilateral done
clear
C)
Scalene done
clear
D)
Right - angled done
clear
View Solution play_arrow
-
question_answer4)
In the figure given below, ABC is an isosceles triangle such that \[\mathbf{AB}=\mathbf{AC}\] and\[\angle \mathbf{B}=\mathbf{3}{{\mathbf{0}}^{{}^\circ }}\], AD is the median to the base BC. Then \[\Delta \mathbf{BAD}\] is:
A)
\[{{80}^{{}^\circ }}\] done
clear
B)
\[{{40}^{{}^\circ }}\] done
clear
C)
\[{{110}^{{}^\circ }}\] done
clear
D)
\[{{60}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer5)
In the figure given below, an isosceles triangle ABC is right angled at B. D is a point inside the triangle ABC. P and Q are the point of the perpendiculars drawn from D on the side AB and AC respectively of \[\Delta \mathbf{ABC}\]. If \[AP=x\] cm, \[\mathbf{AQ=y}\] cm and \[\angle \mathbf{BAD}=\mathbf{1}{{\mathbf{5}}^{{}^\circ }}\]. Then, sin\[{{75}^{{}^\circ }}=\]?
A)
\[\frac{2y}{\sqrt{3x}}\] done
clear
B)
\[\frac{x}{2y}\] done
clear
C)
\[\frac{\sqrt{3x}}{2y}\] done
clear
D)
\[\frac{2x}{\sqrt{3}y}\] done
clear
View Solution play_arrow
-
question_answer6)
In the given figure below, ABC is ail isosceles triangle with. The side BA Is produced to D such that \[\mathbf{AB}=\mathbf{AD}\]. If \[\angle ABC={{35}^{{}^\circ }}\], then \[\angle \mathbf{BCD}\] is equal to
A)
\[{{45}^{{}^\circ }}\] done
clear
B)
\[{{90}^{{}^\circ }}\] done
clear
C)
\[{{30}^{{}^\circ }}\] done
clear
D)
\[{{60}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer7)
In the given figure below. \[\Delta \mathbf{PQR}\] is an Isosceles triangle inscribed in a circle. If \[\mathbf{PQ=PR=12}\sqrt{\mathbf{5}}\]cm \[\mathbf{QR=24}\]cm then the radius of circle is
A)
10 cm done
clear
B)
15 cm done
clear
C)
12 cm done
clear
D)
14 cm done
clear
View Solution play_arrow
-
question_answer8)
In the given figure below, \[\Delta \mathbf{ABC}\] is an isosceles triangle with \[\mathbf{AB}=\mathbf{AC}=\mathbf{17}\]cm and altitude from A to BC is 15 cm. The length of side BC is:
A)
9 cm done
clear
B)
12 cm done
clear
C)
16 cm done
clear
D)
20 cm done
clear
View Solution play_arrow
-
question_answer9)
In the (not drawn to scale) given figure below, if \[\mathbf{AD}=\mathbf{DC}=\mathbf{BC}\] and \[\angle \mathbf{BCE}=\mathbf{8}{{\mathbf{4}}^{{}^\circ }}\]then \[\angle \mathbf{DBC}\]is:
A)
\[{{64}^{{}^\circ }}\] done
clear
B)
\[{{84}^{{}^\circ }}\] done
clear
C)
\[{{56}^{{}^\circ }}\] done
clear
D)
\[{{96}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer10)
In the given figure below, 0 and C are respectively the orthocentre and circum centre of an acute angled triangle PQR. The points P and 0 are joined and produced to meet the side QR at S. If \[\angle \mathbf{PQS}=\mathbf{6}{{\mathbf{0}}^{{}^\circ }}\]and \[\angle \mathbf{QCR}=\mathbf{13}{{\mathbf{0}}^{{}^\circ }}\], then \[\angle \mathbf{RPS}=\]
A)
\[{{30}^{{}^\circ }}\] done
clear
B)
\[{{35}^{{}^\circ }}\] done
clear
C)
\[{{100}^{{}^\circ }}\] done
clear
D)
\[{{60}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer11)
In the given figure below, the external bisector of \[\angle \mathbf{B}\] and \[\angle C\] of \[\Delta \mathbf{ABC}\] (where AB and AC extended to E and F respectively) meet at point P. If \[\angle \mathbf{BAC}=\mathbf{12}{{\mathbf{0}}^{{}^\circ }}\], then the measure of \[\angle \mathbf{BPC}\] is
A)
\[{{50}^{{}^\circ }}\] done
clear
B)
\[{{80}^{{}^\circ }}\] done
clear
C)
\[{{30}^{{}^\circ }}\] done
clear
D)
\[{{100}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer12)
In a \[\Delta \mathbf{ABC},\overline{\mathbf{AD}},\overline{\mathbf{BE}}\], and \[\overline{\mathbf{CF}}\] are three medians. Then the ratio \[\left( {{\overline{\mathbf{AD}}}^{\mathbf{2}}}\mathbf{+}{{\overline{\mathbf{BE}}}^{\mathbf{2}}}\mathbf{+}{{\overline{\mathbf{CF}}}^{\mathbf{2}}} \right)\mathbf{:}\]\[\left( {{\overline{\mathbf{AB}}}^{\mathbf{2}}}\mathbf{+}{{\overline{\mathbf{AC}}}^{\mathbf{2}}}\mathbf{+}{{\overline{\mathbf{BC}}}^{\mathbf{2}}} \right)\] is
A)
Equal to \[\frac{3}{4}\] done
clear
B)
Equal to 1 done
clear
C)
Greater than \[\frac{3}{4}\] done
clear
D)
Equal to \[\frac{1}{2}\] done
clear
View Solution play_arrow
-
question_answer13)
In \[\Delta \mathbf{ABC},\angle \mathbf{B}=\mathbf{6}{{\mathbf{0}}^{{}^\circ }}\], and \[\angle \mathbf{C}=\mathbf{5}{{\mathbf{0}}^{{}^\circ }}\], AD and AE are respectively the bisector of \[\angle \mathbf{A}\] and perpendicular on BC. The measure of \[\angle \mathbf{EAD}\] is:
A)
\[{{11}^{{}^\circ }}\] done
clear
B)
\[{{5}^{{}^\circ }}\] done
clear
C)
\[{{12}^{{}^\circ }}\] done
clear
D)
\[{{9}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer14)
In the given figure below, G is the centroid of\[\Delta \mathbf{ABC}\]. If \[\mathbf{AG}=\mathbf{BC}\], then measure of \[\angle \mathbf{BGC}\] is
A)
\[{{45}^{{}^\circ }}\] done
clear
B)
\[{{60}^{{}^\circ }}\] done
clear
C)
\[{{90}^{{}^\circ }}\] done
clear
D)
\[{{120}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer15)
In \[\Delta \mathbf{ABC}\], \[\mathbf{AB}=\mathbf{a}-\mathbf{b},\mathbf{AC}=\sqrt{{{\mathbf{a}}^{\mathbf{2}}}+{{\mathbf{b}}^{\mathbf{2}}}}\]and \[\mathbf{BC}=\sqrt{2\mathbf{ab}}\], then find single B.
A)
\[{{60}^{{}^\circ }}\] done
clear
B)
\[{{30}^{{}^\circ }}\] done
clear
C)
\[{{90}^{{}^\circ }}\] done
clear
D)
\[{{45}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer16)
In the given figure below, ABC is a triangle, PQ is line segment intersecting AB in P and AC in Q and \[\mathbf{PQ}\parallel \mathbf{BC}\]. The ratio of AP: BP = 2:5 and length of PQ is 18 cm. The length of BC is
A)
36 cm. done
clear
B)
63 cm. done
clear
C)
48 cm. done
clear
D)
24 cm. done
clear
View Solution play_arrow
-
question_answer17)
In the given figure below, Let O be the orthocentre of the triangle ABC., If \[\angle \mathbf{BOC}=\mathbf{14}{{\mathbf{0}}^{{}^\circ }}\], Then \[\angle \mathbf{BAC}\] is
A)
\[{{40}^{{}^\circ }}\] done
clear
B)
\[{{50}^{{}^\circ }}\] done
clear
C)
\[{{90}^{{}^\circ }}\] done
clear
D)
\[{{120}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer18)
in the given figure below two medians AD and BE of \[\Delta ABC\] intersect at G at right angles. If \[AD=18\]cm and \[\mathbf{BE=12}\]cm, then the length of BD (in cm) is
A)
10 done
clear
B)
6 done
clear
C)
5 done
clear
D)
3 done
clear
View Solution play_arrow
-
question_answer19)
in \[\Delta ABC,\text{ }AD\bot BC\] and \[A{{D}^{2}}=BD.DC\] the measure of \[\angle BAC\] is.
A)
\[{{60}^{{}^\circ }}\] done
clear
B)
\[{{75}^{{}^\circ }}\] done
clear
C)
\[{{90}^{{}^\circ }}\] done
clear
D)
\[{{45}^{{}^\circ }}\] done
clear
View Solution play_arrow
-
question_answer20)
In a \[\Delta \mathbf{ABC}\], X and Y are two points on PQ and PR respectively such that \[\mathbf{XY}\parallel \mathbf{QR}\], bisects the AABC in two equal areas. Then the ratio QX : PQ is
A)
\[1:\sqrt{2}\] done
clear
B)
1:2 done
clear
C)
\[\left( \sqrt{2}-1 \right):\sqrt{2}\] done
clear
D)
\[\sqrt{2}:1\] done
clear
View Solution play_arrow
-
question_answer21)
Let ABC is triangle right angled at B. If AB = 12 cm and BC = 9 cm then what is the length of the circumradius of the \[\Delta \mathbf{ABC}\]?
A)
10 cm done
clear
B)
7 cm done
clear
C)
6 cm done
clear
D)
7.5 cm done
clear
View Solution play_arrow
-
question_answer22)
If AD is the internal angular bisector of \[\Delta \mathbf{ABC}\] with \[\mathbf{AB}=\mathbf{4}\]cm and \[\mathbf{AC}=\mathbf{1}\]cm, then what is BD : BC ?
A)
1 : 3 done
clear
B)
1 : 4 done
clear
C)
5 : 4 done
clear
D)
4 : 5 done
clear
View Solution play_arrow
-
question_answer23)
If each side of triangle ABC is of length 4 and if AD is 1 and \[\mathbf{ED}\bot \mathbf{AB}\]. The area of region BCED is equal to
A)
\[8\sqrt{3}\] done
clear
B)
\[4\sqrt{3}\] done
clear
C)
\[4.5\sqrt{3}\] done
clear
D)
\[3.5\sqrt{3}\] done
clear
View Solution play_arrow
-
question_answer24)
A\[\Delta \mathbf{DEF}\] is formed by joining the mid-points of the sides of \[\Delta \mathbf{ABC}\]. Similarly, a \[\Delta \mathbf{DEF}\] is formed by joining the mid-points of the sides of the \[\Delta \mathbf{PQR}\]. If the sides of the \[\Delta \mathbf{PQR}\] are of lengths 2, 3 and 4 units, what is the perimeter of the\[\Delta \mathbf{ABC}\]?
A)
18 units done
clear
B)
36 units done
clear
C)
48 units done
clear
D)
cannot be determined done
clear
View Solution play_arrow
-
question_answer25)
PQR is an equilateral triangle. O is the point of intersection of altitudes PL, QM RN, If \[\mathbf{OP}=\mathbf{9}\]cm, then what is the perimeter of the \[\Delta \mathbf{PQR}\]?
A)
\[6\sqrt{3}\]cm done
clear
B)
\[12\sqrt{3}\]cm done
clear
C)
\[16\sqrt{3}\]cm done
clear
D)
\[18\sqrt{3}\]cm. done
clear
View Solution play_arrow
-
question_answer26)
ABC is a right angled triangle such that AB \[AB=\mathbf{x}-\mathbf{y},\mathbf{BC}=\mathbf{x}\] and \[\mathbf{CA}=\mathbf{x}-\mathbf{y}\], D is a point on BC such that \[BD=AB\]. The ratio of BD:DC for any value of x and y is given by
A)
3:2 done
clear
B)
4:3 done
clear
C)
5:4 done
clear
D)
3:1 done
clear
View Solution play_arrow
-
question_answer27)
Let ABC be an equilateral triangle. If the side BC is produced to the point D so that \[BC=2CD\], then \[\mathbf{A}{{\mathbf{D}}^{\mathbf{2}}}\]is equal to
A)
\[3C{{D}^{2}}\] done
clear
B)
\[4C{{D}^{2}}\] done
clear
C)
\[5C{{D}^{2}}\] done
clear
D)
\[7C{{D}^{2}}\] done
clear
View Solution play_arrow
-
question_answer28)
In a \[\Delta \mathbf{ABC},\] \[\mathbf{BCA}=\mathbf{9}{{\mathbf{0}}^{{}^\circ }}\] and CD is perpendicular to AB If \[\mathbf{AD}=\mathbf{4}\]cm and \[\mathbf{BD}=\mathbf{9}\]cm, then the value of CD will be
A)
\[\sqrt{18}\] cm done
clear
B)
\[\sqrt{20}\] cm done
clear
C)
8 cm done
clear
D)
6 cm done
clear
View Solution play_arrow
-
question_answer29)
In the adjoining figure given, \[\angle \mathbf{PQR}=\mathbf{9}{{\mathbf{0}}^{{}^\circ }}\]and QL is a median, \[\mathbf{PQ}=\mathbf{12}\]cm, and \[\mathbf{QR}=\mathbf{14}\]cm. Then, QL is equal to
A)
10cm done
clear
B)
5.5cm done
clear
C)
6 cm done
clear
D)
6.5 cm done
clear
View Solution play_arrow
-
question_answer30)
Using the following figure\[\angle \mathbf{BCE}=\angle \mathbf{DEA}\], then determine x.
A)
\[\frac{ac}{b+c}\] done
clear
B)
\[\frac{ac}{b-c}\] done
clear
C)
\[\frac{b+c}{ca}\] done
clear
D)
\[\frac{2ac}{b+c}\] done
clear
View Solution play_arrow