Solved papers for JEE Main & Advanced JEE Main Solved Paper-2014

done JEE Main Solved Paper-2014 Total Questions - 30

  • question_answer1) The image of the line \[\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-4}{-5}\]in the plane \[2x-y+z+3=0\]is the line:   JEE Main  Solved  Paper-2014

    A)
    \[\frac{x+3}{3}=\frac{y-5}{1}=\frac{z-2}{-5}\]

    B)
    \[\frac{x+3}{-3}=\frac{y-5}{-1}=\frac{z+2}{5}\]

    C)
    \[\frac{x-3}{3}=\frac{y+5}{1}=\frac{z-2}{-5}\]

    D)
    \[\frac{x-3}{-3}=\frac{y+5}{-1}=\frac{z-2}{5}\]

    View Answer play_arrow
  • question_answer2) If the coefficients of \[{{x}^{3}}\]and \[{{x}^{4}}\] in the expansion of \[(1+ax+b{{x}^{2}}){{(1-2x)}^{18}}\]in powers of x are both zero, then (a, b) is equal to:   JEE Main  Solved  Paper-2014

    A)
    \[\left( 16,\frac{251}{3} \right)\]                              

    B)
    \[\left( 14,\frac{251}{3} \right)\]

    C)
    \[\left( 14,\frac{272}{3} \right)\]                              

    D)
    \[\left( 16,\frac{272}{3} \right)\]

    View Answer play_arrow
  • question_answer3) If \[a\in R\]and the equation \[-3{{(x-[x])}^{2}}+2(x-[x])+{{a}^{2}}=0\](where [x] denotes the greatest integer ≤ x) has no integral solution, then all possible values of alie in the interval:   JEE Main  Solved  Paper-2014

    A)
    \[(-1,0)\cup (0,1)\]         

    B)
    \[(-2,-1)\]                           

    C)
    \[(-\infty ,-2)\cup (2,\infty )\]

    View Answer play_arrow
  • question_answer4) If \[\left[ \vec{a}\times \vec{b}\,\vec{b}\times \vec{c}\,\vec{c}\times \vec{a} \right]=\lambda {{\left[ \vec{a}\,\vec{b}\,\,\vec{c} \right]}^{2}}\]then\[\lambda \]is equal to:   JEE Main  Solved  Paper-2014

    A)
    2                                             

    B)
    3

    C)
    0                                             

    D)
    1

    View Answer play_arrow
  • question_answer5) The variance of first 50 even natural numbers is:   JEE Main  Solved  Paper-2014

    A)
    \[\frac{833}{4}\]                                              

    B)
    \[833\]

    C)
    \[437\]                                 

    D)
    \[\frac{437}{4}\]

    View Answer play_arrow
  • question_answer6) A bird is sitting on the top of a vertical pole 20 m high and its elevation from a point O on the ground is \[45{}^\circ\]. It flies off horizontally straight away from the point O. After one second, the elevation of the bird from O is reduced to 30°. Then the speed (in m/s) of the bird is:   JEE Main  Solved  Paper-2014

    A)
    \[40\left( \sqrt{2}-1 \right)\]                      

    B)
    \[40\left( \sqrt{3}-\sqrt{2} \right)\]

    C)
     \[20\sqrt{2}\]                  

    D)
    \[20\left( \sqrt{3}-1 \right)\]

    View Answer play_arrow
  • question_answer7) The integral\[\int\limits_{0}^{\pi }{\sqrt{1+4{{\sin }^{2}}\frac{x}{2}-4\sin \frac{x}{2}}dx}\]equals:   JEE Main  Solved  Paper-2014

    A)
    \[\pi -4\]                             

    B)
    \[\frac{2\pi }{3}-4-4\sqrt{3}\]

    C)
     \[4\sqrt{3}-4\]                 

    D)
     \[4\sqrt{3}-4-\frac{\pi }{3}\]

    View Answer play_arrow
  • question_answer8) The statement \[\tilde{\ }(p\leftrightarrow \tilde{\ }q)\] is:   JEE Main  Solved  Paper-2014

    A)
    equivalent to \[p\leftrightarrow q\]

    B)
    equivalent to \[\tilde{\ }p\leftrightarrow q\]

    C)
    a tautology                        

    D)
    a fallacy

    View Answer play_arrow
  • question_answer9) If A is an \[3\times 3\] non ? singular matrix such that AA′ = A′A and B = A−1 A′, then BB′ equals:   JEE Main  Solved  Paper-2014

    A)
    \[I+B\]                 

    B)
    \[I\]

    C)
    \[{{B}^{-1}}\]                                    

    D)
    \[({{B}^{-1}})'\]

    View Answer play_arrow
  • question_answer10) The integral\[\int_{{}}^{{}}{\left( 1+x-\frac{1}{x} \right)}{{e}^{x+\frac{1}{x}}}dx\]is equal to   JEE Main  Solved  Paper-2014

    A)
    \[(x-1){{e}^{x+\frac{1}{x}}}+c\]

    B)
    \[x{{e}^{x+\frac{1}{x}}}+c\]

    C)
    \[(x+1){{e}^{x+\frac{1}{x}}}+c\]               

    D)
    \[-x{{e}^{x+\frac{1}{x}}}+c\]

    View Answer play_arrow
  • question_answer11) If z is a complex number such that\[|z|\ge 2,\]then the minimum value of \[\left| z+\frac{1}{2} \right|:\]   JEE Main  Solved  Paper-2014

    A)
    is equal to \[\frac{5}{2}\]

    B)
    lies in the interval (1, 2)

    C)
    is strictly greater than \[\frac{5}{2}\]

    D)
    is strictly greater than \[\frac{3}{2}\]but less than \[\frac{5}{2}\]

    View Answer play_arrow
  • question_answer12) If g is the inverse of a function f and \[(x)=\frac{1}{1+{{x}^{5}}},\]then g′ (x) is equal to :   JEE Main  Solved  Paper-2014

    A)
    \[1+{{x}^{5}}\]                 

    B)
    \[5{{x}^{4}}\]

    C)
    \[\frac{1}{1+{{\left\{ g(x) \right\}}^{5}}}\]                           

    D)
    \[1+{{\{g(x)\}}^{5}}\]

    View Answer play_arrow
  • question_answer13) If\[\alpha ,\beta \ne 0,\]and\[f(n)={{\alpha }^{n}}+{{\beta }^{n}}\]and\[\left| \begin{matrix}    3 & 1+f(1) & 1+f(2)  \\    1+f(1) & 1+f(2) & 1+f(3)  \\    1+f(2) & 1+f(3) & 1+f(4)  \\ \end{matrix} \right|=K\]\[{{(1-\alpha )}^{2}}{{(1-\beta )}^{2}}{{(\alpha -\beta )}^{2}},\]then K is equal to:   JEE Main  Solved  Paper-2014

    A)
    \[\alpha \beta \]                                             

    B)
    \[\frac{1}{\alpha \beta }\]

    C)
    \[1\]            

    D)
    \[-1\]

    View Answer play_arrow
  • question_answer14) Let \[{{f}_{k}}(x)=\frac{1}{k}(si{{n}^{k}}x+co{{s}^{k}}x),\]where\[x\in R\]and\[k\ge 1.\]Then\[{{f}_{4}}(x)-{{f}_{6}}(x)\]equals:   JEE Main  Solved  Paper-2014

    A)
    \[\frac{1}{6}\]                                   

    B)
    \[\frac{1}{3}\]

    C)
    \[\frac{1}{4}\]                                   

    D)
    \[\frac{1}{12}\]

    View Answer play_arrow
  • question_answer15) Let \[\alpha \] and \[\beta \] be the roots of equation \[p{{x}^{2}}+qx+r=0,p\ne 0.\]If p, q, r are in A.P. and \[\frac{1}{\alpha }+\frac{1}{\beta }=4,\]then the value of \[|\alpha -\beta |\]is :   JEE Main  Solved  Paper-2014

    A)
    \[\frac{\sqrt{61}}{9}\]                   

    B)
    \[\frac{2\sqrt{17}}{9}\]

    C)
    \[\frac{\sqrt{34}}{9}\]                   

    D)
    \[\frac{2\sqrt{13}}{9}\]

    View Answer play_arrow
  • question_answer16) Let A and B be two events such that \[P(\overline{A\cup B})=\frac{1}{16}.P(A\cap B)=\frac{1}{4}\]and\[P(\overline{A})=\frac{1}{4},\]where\[\overline{A}\]stands for the complement of the event A. Then the events A and B are :   JEE Main  Solved  Paper-2014

    A)
     mutually exclusive and independent.

    B)
    equally likely but not independent.

    C)
    independent but not equally likely.

    D)
    independent and equally likely.

    View Answer play_arrow
  • question_answer17) If f and g are differentiable functions in [0, 1] satisfying f(0) = 2 = g(1), g(0) = 0 and f(1) = 6,then for some \[c\in \}0,1[:\]   JEE Main  Solved  Paper-2014

    A)
    \[2f'(c)=g'(c)\]  

    B)
    \[2f'(c)=3g'(c)\]

    C)
    \[f'(c)=g'(c)\]    

    D)
    \[f'(c)=2g'(c)\]

    View Answer play_arrow
  • question_answer18) Let the population of rabbits surviving at a time t be governed by the differential equation\[\frac{dp(t)}{dt}=\frac{1}{2}p(t)-200.\] If \[p(0)=100,\]then p(t) equals :   JEE Main  Solved  Paper-2014

    A)
    \[400-300\,{{\text{e}}^{\text{t/2}}}\]    

    B)
    \[300-200\,{{\text{e}}^{\text{-t/2}}}\]

    C)
    \[600-500\,{{\text{e}}^{\text{t/2}}}\]    

    D)
    \[400-300\,{{\text{e}}^{\text{-t/2}}}\]

    View Answer play_arrow
  • question_answer19) Let C be the circle with centre at (1, 1) and radius = 1. If T is the circle centred at (0, y), passing through origin and touching the circle C externally, then the radius of T is equal to :   JEE Main  Solved  Paper-2014

    A)
    \[\frac{\sqrt{3}}{\sqrt{2}}\]                                        

    B)
    \[\frac{\sqrt{3}}{2}\]

    C)
    \[\frac{1}{2}\]                                   

    D)
    \[\frac{1}{4}\]

    View Answer play_arrow
  • question_answer20) The area of the region described by \[A=\{(x,\text{ }y):{{x}^{2}}+{{y}^{2}}\le 1\]and \[{{y}^{2}}\le 1-x\}\]is   JEE Main  Solved  Paper-2014

    A)
    \[\frac{\pi }{2}+\frac{4}{3}\]       

    B)
    \[\frac{\pi }{2}-\frac{4}{3}\]

    C)
    \[\frac{\pi }{2}-\frac{2}{3}\]                        

    D)
    \[\frac{\pi }{2}+\frac{2}{3}\]

    View Answer play_arrow
  • question_answer21) Let a, b, c and d be non−zero numbers. If the point of intersection of the lines \[4ax+2ay+c=0\]and \[5bx+2by+d=\] lies in the fourth quadrant and is equidistant from the two axes then : JEE Main  Solved  Paper-2014

    A)
     2bc − 3ad = 0    

    B)
    2bc + 3ad = 0

    C)
    3bc − 2ad = 0

    D)
    3bc + 2ad = 0

    View Answer play_arrow
  • question_answer22) Let PS be the median of the triangle with vertices P(2, 2), Q(6, −1) and R (7, 3). The equation ofthe line passing through (1, −1) and parallel to PS is :   JEE Main  Solved  Paper-2014cc

    A)
    \[4x-7y-11=0\] 

    B)
    \[2x+9y+7=0\]

    C)
     \[4x+7y+3=0\] 

    D)
    \[2x-9y-11=0\]

    View Answer play_arrow
  • question_answer23) \[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin (\pi co{{s}^{2}}x)}{{{x}^{2}}}\]is equal to:   JEE Main  Solved  Paper-2014

    A)
    \[\frac{\pi }{2}\]                                              

    B)
    1

    C)
    \[-\pi \]                               

    D)
    \[\pi \]

    View Answer play_arrow
  • question_answer24) If \[X=\{{{4}^{n}}-1:n\varepsilon N\}\] and\[Y=\{9(n-1):n\varepsilon N\},\] where N is the set of natural numbers, then \[X\cup Y\] is equal to :   JEE Main  Solved  Paper-2014

    A)
    N                                            

    B)
    Y − X

    C)
    X                                            

    D)
    Y

    View Answer play_arrow
  • question_answer25) The locus of the foot of perpendicular drawn from the centre of the ellipse \[{{x}^{2}}+3{{y}^{2}}=6\] on any tangent to it is :   JEE Main  Solved  Paper-2014

    A)
    \[{{({{x}^{2}}-{{y}^{2}})}^{2}}=6{{x}^{2}}+2{{y}^{2}}\]

    B)
    \[{{({{x}^{2}}-{{y}^{2}})}^{2}}=6{{x}^{2}}-2{{y}^{2}}\]

    C)
    \[{{({{x}^{2}}+{{y}^{2}})}^{2}}=6{{x}^{2}}+2{{y}^{2}}\]

    D)
    \[{{({{x}^{2}}+{{y}^{2}})}^{2}}=6{{x}^{2}}-2{{y}^{2}}\]

    View Answer play_arrow
  • question_answer26) Three positive numbers form an increasing G.P. If the middle term in this G.P. is doubled, the new numbers are in A.P. Then the common ratio of the G.P. is :   JEE Main  Solved  Paper-2014

    A)
    \[\sqrt{2}+\sqrt{3}\]                      

    B)
    \[3+\sqrt{2}\]

    C)
    \[2-\sqrt{3}\]                    

    D)
    \[2+\sqrt{3}\]

    View Answer play_arrow
  • question_answer27) If \[{{(10)}^{9}}+2{{(11)}^{1}}{{(10)}^{8}}+3{{(11)}^{2}}{{(10)}^{7}}+...+10\]\[{{(11)}^{9}}=k{{(10)}^{9}},\]then k is equal to :   JEE Main  Solved  Paper-2014

    A)
    \[\frac{121}{10}\]                                            

    B)
    \[\frac{441}{100}\]

    C)
    \[100\]                 

    D)
    \[110\]

    View Answer play_arrow
  • question_answer28) The angle between the lines whose direction cosines satisfy the equations \[\ell +m+n=0\]and\[{{\ell }^{2}}={{m}^{2}}+{{n}^{2}}\]is :   JEE Main  Solved  Paper-2014

    A)
    \[\frac{\pi }{3}\]                              

    B)
    \[\frac{\pi }{4}\]

    C)
    \[\frac{\pi }{6}\]                                              

    D)
    \[\frac{\pi }{2}\]

    View Answer play_arrow
  • question_answer29) The slope of the line touching both the parabolas \[{{y}^{2}}=4x\]and \[{{x}^{2}}=-32y\]is :   JEE Main  Solved  Paper-2014

    A)
    \[\frac{1}{2}\]   

    B)
    \[\frac{3}{2}\]

    C)
    \[\frac{1}{8}\]                                   

    D)
    \[\frac{2}{3}\]

    View Answer play_arrow
  • question_answer30) If x = −1 and x = 2 are extreme points of \[f(x)=\alpha log|x|+\beta {{x}^{2}}+x\]then :   JEE Main  Solved  Paper-2014

    A)
    \[\alpha =-6,\beta =\frac{1}{2}\]              

    B)
    \[\alpha =-6,\beta =-\frac{1}{2}\]

    C)
    \[\alpha =2,\beta =-\frac{1}{2}\]              

    D)
    \[\alpha =2,\beta =\frac{1}{2}\]

    View Answer play_arrow

Study Package

JEE Main Solved Paper-2014
 

   


You need to login to perform this action.
You will be redirected in 3 sec spinner