# Solved papers for BCECE Engineering BCECE Engineering Solved Paper-2004

### done BCECE Engineering Solved Paper-2004

• question_answer1) An object accelerates from rest to a velocity 27.5 m/s in 10 s, then the distance covered after next 10 s is:

A) 550 m

B) 137.5 m

C) 412.5 m

D) 175 m

• question_answer2) The position vector of a particle is $\mathbf{\vec{r}}=(a\,\cos \,\omega t)\mathbf{\hat{i}}\,+(a\,\sin \,\omega t)\mathbf{\hat{j}}$ The velocity vector of the particle is:

A) parallel to position vector

B) perpendicular to position vector

C) directed towards the origin

D) directed away from the origin

• question_answer3) If a person sitting in a train moving with a constant velocity along a straight line, throws a ball vertically upwards, then:

A) ball will fall onwards the train

D) none of the above

• question_answer4) A stone thrown at an angle $\theta$ to the horizontal reaches a maximum height H. Then the time of flight of stone will be:

A) $\sqrt{\frac{2H}{g}}$

B) $2\sqrt{\frac{2H}{g}}$

C) $\frac{2\sqrt{2H\sin \theta }}{g}$

D) $\frac{\sqrt{2H\sin \theta }}{g}$

• question_answer5) At the height 80 m, an aeroplane is moved with 150 m/s. A bomb is dropped from it, so as to hit a target. At what distance from the target should the bomb be dropped? $(g=10\,m/{{s}^{2}})$

A) 605.3 m

B) 600 m

C) 80 m

D) 230 m

• question_answer6) A spring has length I and spring constant k. If spring is divided in two equal pans then spring constant of each part is:

A) $k$

B) $\frac{k}{2}$

C) $2k$

D) $4k$

• question_answer7) A body is moving along a rough horizontal surface with an initial velocity 6 m/s. If the body comes to rest after travelling a distance 9 m, then the coefficient of sliding friction will be:

A) 0.4

B) 0.2

C) 0.6

D) 0.8

• question_answer8) If two soap bubbles of different radii are connected by a tube:

A) air flows from the bigger bubble to the smaller bubble till the sizes become equal

B) air flows from bigger bubble to the smaller bubble till the sizes are interchanged

C) air flows from the smaller bubble to the bigger

D) there is no flow of air

• question_answer9) If the momentum of body is increased by 100%, then the percentage increase in the kinetic energy will be:

A) 330%

B) 225%

C) 200%

D) 300%

• question_answer10) Water falls from a height 500 m. The rise in temperature of water at bottom if whole of the energy remains in water, will be : (specific heat of water is c = 4.2 kJ/kg)

A) $0.23{}^\circ C$

B) $1.16{}^\circ C$

C) $0.96{}^\circ C$

D) $1.02{}^\circ C$

• question_answer11) A bullet of mass 0.1 kg is fired with a speed of 100 m/s. The mass of gun being 50 kg. Then, the velocity of recoil become:

A) 0.05 m/s

B) 0.5 m/s

C) 0.1 m/s

D) 0.2 m/s

• question_answer12) A body of mass M moves with velocity v and collides elastically with another body of mass m (M >> m) at rest, then the velocity of body of mass m is:

A) $v$

B) $\text{2v}$

C) $\text{v/2}$

D) zero

• question_answer13) If torque is zero then:

A) angular momentum is conserved

B) linear momentum is conserved

C) energy is conserved

D) angular momentum is not conserved

• question_answer14) A solid sphere, a hollow sphere and a disc having same mass and radius roll down the same inclined plane from rest. Which one will reach the ground in least time?

A) Solid sphere

B) Hollow sphere

C) Disc

D) All will reach in same time

• question_answer15) In simple harmonic motion maximum velocity is at:

A) extreme position

B) half of extreme position

C) equilibrium position

D) between extreme and equilibrium position

• question_answer16) A ball is thrown from a point with a speed at an angle of projection$\theta$.From the same point and at the same instant, a person starts running with a constant speed $\frac{{{v}_{0}}}{2}$ to catch the ball. Will the person be able to catch the ball? If yes, what should be the angle of projection?

A) Yes, $60{}^\circ$

B) Yes, $30{}^\circ$

C) No

D) Yes, $45{}^\circ$

• question_answer17) The ratio of root mean square velocities of ${{O}_{3}}$ And ${{O}_{2}}$ is:

A) 1 : 1

B) 2 : 3

C) 3 : 2

D) $\sqrt{2}:\sqrt{3}$

• question_answer18) If mass of He is 4 times that of hydrogen, then mean velocity of He is:

A) 2 times of H-mean value

B) $\frac{1}{2}$times of H-mean value

C) 4 times of H-mean value

D) same as H-mean value

• question_answer19) A wire elongates by $l$ mm when a load w is hanged from it. If the wire goes over a pulley and two weights w each are hung at the two ends, the elongation of the wire will be (in mm):

A) $l$

B) 2$l$

C) zero

D) $l$/2

• question_answer20) First law of thermodynamics is a consequence of the conservation of:

A) energy

B) charge

C) heat

D) all of these

• question_answer21) An ideal heat engine exhausting heat at $77{}^\circ C$ is to have 30% efficiency. It must take heat at:

A) $127{}^\circ C$

B) $227{}^\circ C$

C) $327{}^\circ C$

D) $673{}^\circ C$

• question_answer22) A liquid cools from $50{}^\circ C$ to $45{}^\circ C$ in 5 min and from $45{}^\circ C$ to $41.5{}^\circ C$ in the next 5 min. The temperature of the surrounding is:

A) $27{}^\circ C$

B) $40.3{}^\circ C$

C) $23.3{}^\circ C$

D) $33.3{}^\circ C$

• question_answer23) At $127{}^\circ C$, radiated energy is $2.7\times {{10}^{-3}}\text{J/s}\text{.}$ At what temperature radiated energy is 4.32 $4.32\times {{10}^{6}}\text{J/s?}$?

A) 400 K

B) 4000 K

C) 80000 K

D) 40000 K

• question_answer24) If wave equation is $y=0.08\sin \frac{2\pi }{\lambda }(200t-x),$then the velocity of the wave will be :

A) 400 $\sqrt{2}$ m/s

B) 200 $\sqrt{2}$ m/s

C) 400 m/s

D) 200 m/s

• question_answer25) A plano-convex lens of refractive index 1.5 and radius of curvature 30 cm is silvered at the curved surface. Now, this lens has been used to form the image of an object. At what distance from this lens, an object be placed in order to have a real image of the size of the object?

A) 20 cm

B) 30 cm

C) 60 cm

D) 80 cm

• question_answer26) A man having height 6 m, observes image of 2 m height erect, then mirror used is:

A) concave

B) convex

C) plane

D) none of these

• question_answer27) Which of the following statements is true?

A) If wavelength of light increases then frequency also increases

B) If energy increases then frequency also increases

C) Frequency of red light is greater than frequency of blue light

D) If energy increases then frequency decreases

• question_answer28) If focal lengths of the objective and the eye piece of a telescope be${{f}_{0}}$and${{f}_{e}}$ respectively, then its magnification is :

A) $\frac{1}{2}({{f}_{0}}+{{f}_{e}})$

B) ${{f}_{0}}/{{f}_{e}}$

C) $({{f}_{0}}+{{f}_{e}})$

D) ${{f}_{0}}\times {{f}_{e}}$

• question_answer29) Near and far points of human eye are:

A) 25 cm and infinite

B) 50 cm and 100 cm

C) 25 cm and 50 cm

D) 0 cm and 25 cm

• question_answer30) Work done in carrying a charge around an equipotential surface will:

A) increase

B) decrease

C) zero

D) infinity

• question_answer31) An air parallel plate capacitor has capacity C. The capacity and distance between plates are doubled when immersed in a liquid then dielectric constant of the liquid is:

A) 1

B) 2

C) 3

D) 4

• question_answer32) If the potential of a capacitor having capacity $6\,\mu F$ is increased from 10 V to 20V, then increase in its energy is:

A) $\text{12 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-6}}}\text{J}$

B) $\text{9 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-4}}}\text{J}$

C) $\text{4}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-6}}}\text{J}$

D) $\text{2}\text{.25 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-6}}}\text{J}$

• question_answer33) The resistance of a bulb filament is 100$\Omega$ at a temperature of $100{}^\circ C$. If its temperature coefficient of resistance be $0.005/{}^\circ C$, its resistance will become 200$\Omega$ at a temperature of:

A) $300{}^\circ C$

B) $400{}^\circ C$

C) $500{}^\circ C$

D) $200{}^\circ C$

• question_answer34) A galvanometer of resistance $22.8\,\,\Omega$ measures 1 A. How much shunt should be used, so that it can be used to measure 20 A?

A) $1\,\Omega$

B) $2\,\,\Omega$

C) $1.2\,\,\Omega$

D) $2.2\,\,\Omega$

• question_answer35) If an ammeter is joined in parallel through a circuit, it can be damaged due to excess:

A) resistance

B) current

C) voltage

D) none of these

• question_answer36) The heat produced by a 100 W heater in 2 min will be equal to:

A) $\text{12 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{3}}}\text{J}$

B) $\text{10 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{3}}}\text{J}$

C) $\text{6 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{3}}}\text{J}$

D) $\text{3 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{3}}}\text{J}$

• question_answer37) Two wires have resistances R and 2R. When both are joining in series and in parallel, then ratio of heats generated in these situations on applying the same voltage, is:

A) 2 : 1

B) 1 : 2

C) 2 : 9

D) 9 : 2

• question_answer38) The current in a coil decreases from 1 A to 0.2 A in 10 s. The coefficient of self-inductance, if induced emf is 0.4 V, is:

A) 5 H

B) 3 H

C) 4 H

D) 2 H

• question_answer39) Cyclotron is a device which is used to:

A) measure the charge

B) measure the voltage

C) accelerate protons

D) accelerate electrons

• question_answer40) In L - R circuit, resistance is 8 $\Omega$ and inductive reactance is $\Omega ,$ then impedance is:

A) $2\Omega$

B) $14\Omega$

C) $4\Omega$

D) $10\Omega$

• question_answer41) According to Maxwells hypothesis, changing electric field gives rise to:

A) magnetic field

C) charge

D) voltage

• question_answer42) Dimensions of Plancks constant is:

A) $\text{ }\!\![\!\!\text{ M}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{-1}}}\text{ }\!\!]\!\!\text{ }$

B) $\text{ }\!\![\!\!\text{ ML}{{\text{T}}^{\text{-2}}}\text{ }\!\!]\!\!\text{ }$

C) $\text{ }\!\![\!\!\text{ M}{{\text{L}}^{-1}}\text{T }\!\!]\!\!\text{ }$

D) $\text{ }\!\![\!\!\text{ M}{{\text{L}}^{-1}}{{\text{T}}^{\text{-2}}}\text{ }\!\!]\!\!\text{ }$

• question_answer43) In any fission process the ratio mass of fission products mass of parent nucleus

A) less than 1

B) greater than 1

C) equal to 1

D) depends on the mass of parent nucleus

• question_answer44) If in a nuclear fusion process, the masses of the fusing nuclei be ${{m}_{1}}$ and ${{m}_{2}}$ and the mass of the resultant nucleus be ${{m}_{3,}}$ then:

A) ${{m}_{3}}={{m}_{1}}+{{m}_{2}}$

B) ${{m}_{3}}=({{m}_{1}}-{{m}_{2}})$

C) ${{m}_{3}}<({{m}_{1}}+{{m}_{2}})$

D) ${{m}_{3}}>({{m}_{1}}+{{m}_{2}})$

• question_answer45) In BJT, maximum current flows in which or the following?

A) Emitter region

B) Base region

C) Collector region

D) Equal in all the regions

• question_answer46) In frequency modulated wave:

A) frequency varies with time

B) amplitude varies with time

C) both frequency and amplitude vary with time

D) both frequency and amplitude are constant

• question_answer47) The total energy of an electron in the first excited state of hydrogen is about -3.4 eV. Its kinetic energy in this state is:

A) - 3.4 eV

B) - 6.8 eV

C) 6.8 eV

D) 3.4 eV

• question_answer48) If ${{\lambda }_{v,}}{{\lambda }_{x}}$and ${{\lambda }_{m}}$represent the wavelengths of visible light, X-rays and microwaves respectively, then:

A) ${{\lambda }_{m}}>{{\lambda }_{x}}>{{\lambda }_{v}}$

B) ${{\lambda }_{v}}>{{\lambda }_{m}}>{{\lambda }_{x}}$

C) ${{\lambda }_{m}}>{{\lambda }_{v}}>{{\lambda }_{x}}$

D) ${{\lambda }_{v}}>{{\lambda }_{x}}>{{\lambda }_{m}}$

• question_answer49) The manifestation of band structure in solids is due to:

A) Heisenbergs uncertainty principle

B) Paulis exclusion principle

C) Bohrs correspondence principle

D) Boltzmanns law

• question_answer50) An electric power station transmits 100 MW power through long and thin cable. If the transmission is at (i) 20000 V, (ii) 200 V, in which case would be less power loss?

A) In (i) only

B) In (ii) only

C) In each case, power loss is zero

D) Data is insufficient

• question_answer51) Arrange the following as increase in oxidation number:

 (i)$M{{n}^{2+}}$ (ii) $Mn{{O}_{2}}$ (iii) $KMn{{O}_{4}}$ (iv) ${{K}_{2}}Mn{{O}_{4}}$

A) $(i)>(ii)>(iii)>(iv)$

B) $(i)<(ii)<(iv)>(iii)$

C) $(ii)<(iii)<(i)<(iv)$

D) $(iii)>(i)>(iv)>(ii)$

• question_answer52) $S-S$bond is not present in:

A) ${{H}_{2}}{{S}_{2}}{{O}_{4}}$

B) ${{H}_{2}}{{S}_{2}}{{O}_{6}}$

C) ${{H}_{2}}{{S}_{2}}{{O}_{8}}$

D) None of these

• question_answer53) A radioactive substance after 48 days remains 25% of initial then find disintegration constant:

A) $2.89\times {{10}^{-2}}{{T}^{-1}}$

B) $3.89\times {{10}^{-3}}{{T}^{-1}}$

C) $4.89\times {{10}^{-2}}{{T}^{-1}}$

D) None of these

• question_answer54) Correct order of reactivity:

A) ${{I}_{2}}>B{{r}_{2}}>C{{l}_{2}}>{{F}_{2}}$

B) $B{{r}_{2}}>{{I}_{2}}>C{{l}_{2}}>{{F}_{2}}$

C) $C{{l}_{2}}>B{{r}_{2}}>{{I}_{2}}>{{F}_{2}}$

D) ${{F}_{2}}>C{{l}_{2}}>B{{r}_{2}}>{{I}_{2}}$

• question_answer55) Three elements A, B and C having reduction potential $-1.5,-0.5$ and $1.5\,V$respectively then arrange them in correct order according to reducing power:

A) $A>B>C$

B) $~B>A>C$

C) $~C>B>A$

D) $~B>C>A$

• question_answer56) The standard reduction potential ${{E}^{o}}$for the half reactions are as: $Zn\xrightarrow{{}}Z{{n}^{2+}}+2{{e}^{-}},{{E}^{o}}=0.76\,V$ $Cu\xrightarrow{{}}C{{u}^{2+}}+2{{e}^{-}},{{E}^{o}}=0.34\,V$ The emf for the cell reaction: $Zn+C{{u}^{2+}}\xrightarrow{{}}Z{{n}^{2}}+Cu$

A) $0.42\,V$

B) $-0.42\,\,V$

C) $-1.1\,V$

D) $1.1\,V$

• question_answer57) Variable oxidation state and degenerated orbital shows:

A) s-block element

B) p-block element

C) d-block element

D) all of these

• question_answer58) Which of the following is more acidic in nature?

A) $HClO$

B) $~HCl{{O}_{2}}$

C) $~HCl{{O}_{3}}$

D) $~HCl{{O}_{4}}$

• question_answer59) Unit of the constant of zero order reaction is:

A) $\text{tim}{{\text{e}}^{-1}}$

B) $\text{mol}\,{{L}^{-1}}\,{{s}^{-1}}$

C) $L\,mo{{l}^{-1}}{{s}^{-1}}$

D) $\text{L}\,mo{{l}^{-1}}{{s}^{-1}}$

• question_answer60) Mole fraction of a solute in benzene is 0.2 then find molality of solute:

A) 3.2

B) 2

C) 4

D) 3.6

• question_answer61) What amount of water is added in 40 mL of $\text{NaOH}\,\text{(0}\text{.1 N)}$which is neutralized by 50 mL of $\text{HCl}\,\text{(0}\text{.2 N)}$

A) 80 mL

B) 60 mL

C) 40 mL

D) 90 mL

• question_answer62) Slope between PV and P at constant temperature is:

A) zero

B) 1

C) $\frac{1}{2}$

D) $\frac{1}{\sqrt{2}}$

• question_answer63) When pressure is applied to the equilibrium system icewater. Which of the following phenomenon will happen?

A) More ice will be formed

B) Water will evaporate

C) More water will be formed

D) Equilibrium will not be formed

• question_answer64) For$A\xrightarrow{{}}B,\Delta H=4\,k\,cal\,mo{{l}^{-1}}$ $\Delta S=10\,cal\,mo{{l}^{-1}}{{K}^{-1}}$reaction is spontaneous when temperature can be:

A) 400 K

B) 300 K

C) 500 K

D) none of these

• question_answer65) Degree of dissociation of $N{{H}_{4}}OH$in water is $1.8\times {{10}^{-5}},$then hydrolysis constant of $N{{H}_{4}}Cl$is:

A) $1.8\times {{10}^{-5}}$

B) $1.8\times {{10}^{-10}}$

C) $5.55\times {{10}^{-5}}$

D) $5.55\times {{10}^{-10}}$

• question_answer66) A current of strength 2.5A was passed through $CuS{{O}_{4}}$solution for 6 min 26s. The amount of copper deposited is: $(\text{At}\text{.wt}\text{.of }Cu=63.5,1\text{ }F=96500\text{ }C)$

A) 0.3175 g

B) 3.175 g

C) 0.635 g

D) 6.35 g

• question_answer67) The charge on an electron was discovered by:

A) J. J. Thomson

B) Neil Bohr

D) Mullikan

• question_answer68) The normality of mixture obtained by mixing 100 mL of $\text{0}\text{.2 M }{{\text{H}}_{\text{2}}}\text{S}{{\text{0}}_{\text{4}}}\text{+ 100 mL}$of $\text{0}\text{.2 M NaOH}$is:

A) 0.2

B) 0.01

C) 0.1

D) 0.3

• question_answer69) The Bohrs orbit radius for the hydrogen atom $(n=1)$ is approximately $\text{0}\text{.53 }\overset{\text{o}}{\mathop{\text{A}}}\,$. The radius for the first excited state $(n=2)$ orbit is:

A) $\text{0}\text{.27 }\overset{\text{o}}{\mathop{\text{A}}}\,$

B) $\text{1}\text{.27 }\overset{\text{o}}{\mathop{\text{A}}}\,$

C) $\text{2}\text{.12 }\overset{\text{o}}{\mathop{\text{A}}}\,$

D) $\text{3}\text{.12 }\overset{\text{o}}{\mathop{\text{A}}}\,$

• question_answer70) A gas has a vapour density 11.2. The volume occupied by $\lg$of the gas at NTP is:

A) 1 L

B) 11.2 L

C) 22.4 L

D) 4 L

• question_answer71) If $n=3,\,l=0$and $m=0,$then atomic number is:

A) 12 or 13

B) 13 or 14

C) 10 or 11

D) 11 or 12

• question_answer72) Which is not a colligative property?

A) Osmotic pressure

B) Optical activity

C) Elevation in boiling point

D) Depression in freezing point

• question_answer73) The rate constant of a first order reaction is$3\times {{10}^{-6}}$ per second and initial concentration is 0.10 M. Then the initial rate of reaction is:

A) $3\times {{10}^{-6}}m{{s}^{-1}}$

B) $3\times {{10}^{-8}}m{{s}^{-1}}$

C) $3\times {{10}^{-7}}m{{s}^{-1}}$

D) $3\times {{10}^{-9}}m{{s}^{-1}}$

• question_answer74) $C{{H}_{2}}=C{{H}_{2}}(g)+{{H}_{2}}(g)\to C{{H}_{3}}-C{{H}_{3}}(g)$ The heat of reaction is [bond energy of $C-C=80\,kcal,\,C=C=145\,kcal,$ $C-H=98\,kcal,\,H-H=103\,kcal$

A) $~-14\text{ kcal}$

B) $~-28\text{ kcal}$

C) $~-\,42\text{ kcal}$

D) $~-\,56\text{ kcal}$

• question_answer75) Tyndall effect is shown by:

A) precipitate

B) sol

C) plasma

D) solution

• question_answer76) If $p{{K}_{a}}$values of four adds are given below at $25{{\,}^{o}}C$the strongest acid is:

A) 2.0

B) 2.5

C) 3.0

D) 4.0

• question_answer77) The solubility of gas in liquid depends upon:

A) the nature of gas

B) the temperature

C) the nature of solvent

D) all of the above

• question_answer78) Write the IUPAC name of: $C{{H}_{3}}-C{{H}_{2}}-\underset{C{{H}_{3}}}{\overset{OH}{\mathop{\underset{|}{\overset{|}{\mathop{C}}}\,}}}\,-C{{H}_{2}}-C{{H}_{3}}$

A) 3- methylpentane-3-ol

B) 3-hydroxyhexane

C) 3-hydroxy-3-methyl pentane

D) all of the above

• question_answer79) Natural rubber is polymer of:

A) ${{H}_{2}}C=\underset{Cl}{\overset{C{{H}_{3}}}{\mathop{\underset{|}{\overset{|}{\mathop{C}}}\,}}}\,-CH=C{{H}_{2}}$

B) ${{H}_{2}}C=\overset{Cl}{\mathop{\overset{|}{\mathop{C}}\,}}\,-CH=C{{H}_{2}}$

C) $\overset{{{C}_{6}}{{H}_{5}}}{\mathop{\overset{|}{\mathop{C}}\,}}\,=C{{H}_{2}}$

D) ${{(-C{{H}_{2}}-C{{H}_{2}}-)}_{n}}$

• question_answer80) $C{{H}_{3}}-C{{H}_{2}}-O-C{{H}_{2}}-C{{H}_{3}}$reacts with hot and excess HI, then formed product is:

A) $C{{H}_{3}}-C{{H}_{2}}-I$and $C{{H}_{3}}C{{H}_{2}}OH$

B) $C{{H}_{3}}-C{{H}_{2}}-OH$

C) $C{{H}_{3}}-C{{H}_{2}}-I$

D) none of the above

• question_answer81) X compounds reacts with Na to give $C{{H}_{3}}C{{H}_{2}}C{{H}_{2}}C{{H}_{3}},$ then compound X is:

A) $C{{H}_{3}}C{{H}_{2}}OH$

B) $C{{H}_{3}}C{{H}_{2}}-Cl$

C) $C{{H}_{3}}-C{{H}_{3}}$

D) $C{{H}_{3}}C{{H}_{2}}C{{H}_{2}}C{{H}_{2}}OH$

• question_answer82) In the following compound, least number of mono chlorination is possible:

A) $C{{H}_{3}}C{{H}_{2}}C{{H}_{2}}C{{H}_{2}}C{{H}_{3}}$

B) $C{{H}_{3}}-\underset{C{{H}_{3}}}{\mathop{\underset{|}{\mathop{CH}}\,}}\,-C{{H}_{2}}-C{{H}_{3}}$

C) $C{{H}_{3}}-\underset{C{{H}_{3}}}{\overset{C{{H}_{3}}}{\mathop{\underset{|}{\overset{|}{\mathop{C}}}\,}}}\,-H$

D) $C{{H}_{3}}-\underset{C{{H}_{3}}}{\overset{C{{H}_{3}}}{\mathop{\underset{|}{\overset{|}{\mathop{C}}}\,}}}\,-C{{H}_{3}}$

• question_answer83) $C{{H}_{3}}C{{H}_{2}}OH$convert into $C{{H}_{3}}CHO$in the presence of:

A) $N{{a}_{2}}C{{r}_{2}}{{O}_{7}}$and $NaOH$

B) $N{{a}_{2}}C{{r}_{2}}{{O}_{7}}$and dil. ${{H}_{2}}S{{O}_{4}}$

C) $NaOH$

D) Fe in presence of $\text{NaOH}$

• question_answer84) Which of the following reactant give Tollens reagent and Fehlings solution test?

A) $C{{H}_{3}}CHO$

B) $C{{H}_{3}}COOH$

C) $C{{H}_{3}}-\underset{O}{\mathop{\underset{||}{\mathop{C}}\,}}\,-C{{H}_{3}}$

D) $C{{H}_{3}}-C{{H}_{2}}COOH$

• question_answer85) The alcohol manufactured from water gas is:

A) $C{{H}_{3}}OH$

B) ${{C}_{2}}{{H}_{5}}OH$

C) $C{{H}_{3}}C{{H}_{2}}COOH$

D) ${{(C{{H}_{3}})}_{2}}CHOH$

• question_answer86) The most stable alkene is:

A) ${{R}_{2}}C=C{{R}_{2}}$

B) $RCH=CHR$

C) $C{{H}_{2}}=C{{H}_{2}}$

D) $RCH=C{{R}_{2}}$

• question_answer87) The most favorable condition for the manufacture of $N{{H}_{3}}$is:

A) high temperature and high pressure

B) low temperature and low pressure

C) high temperature and low pressure

D) low temperature and high pressure

• question_answer88) The conversion of benzaldehyde into benzyl alcohol takes place by:

A) Fittig reaction

B) Wurtz Fittig reaction

C) Wurtz reaction

D) Cannizaros reaction

A) antibiotic

B) antipyretic

C) antimalarial

D) analgesic

• question_answer90) Benzaldehyde gives a positive test with:

A) Toilers reagent

B) Fehling solution

C) Benedicts solution

D) all of the above

• question_answer91) Which of the following is not soluble in $NaOH$?

A) $Fe{{(OH)}_{3}}$

B) $Zn{{(OH)}_{2}}$

C) $Al{{(OH)}_{3}}$

D) $Sn{{(OH)}_{2}}$

• question_answer92) Which of the following has least oxidation state of Fe?

A) ${{K}_{3}}[Fe{{(OH)}_{6}}]$

B) ${{K}_{2}}[Fe{{O}_{4}}]$

C) $FeS{{O}_{4}}{{(N{{H}_{4}})}_{2}}S{{O}_{4}}.6{{H}_{2}}O$

D) ${{[Fe{{(CN)}_{6}}]}^{3-}}$

• question_answer93) Green vitriol is formed by:

A) $Fe{{S}_{2}}+{{H}_{2}}O+{{O}_{2}}$

B) $Fe{{S}_{2}}+{{H}_{2}}O+C{{O}_{2}}$

C) $Fe{{S}_{2}}+CO+C{{O}_{2}}$

D) $Fe{{S}_{2}}+CO$

• question_answer94) $NaOH+{{P}_{4}}+{{H}_{2}}O\xrightarrow{{}}$?

A) $P{{H}_{3}}+Na{{H}_{2}}P{{O}_{2}}$

B) $P{{H}_{3}}+N{{a}_{2}}P{{O}_{4}}$

C) $P{{H}_{3}}+N{{a}_{2}}HP{{O}_{2}}$

D) ${{H}_{3}}P{{O}_{4}}+NaO$

• question_answer95) Slag is represented by:

A) $CaSi{{O}_{3}}$

B) $Si{{O}_{3}}$

C) $Ca{{(OH)}_{2}}$

D) $CaO$

• question_answer96) Which of the following is not a nucleophile?

A) $B{{F}_{3}}$

B) $N{{H}_{3}}$

C) $C{{N}^{-}}$

D) $O{{H}^{-}}$

• question_answer97) Fuming sulphuric acid is:

A) ${{H}_{2}}S{{O}_{4}}+S{{O}_{3}}$

B) ${{H}_{2}}S{{O}_{4}}+S{{O}_{2}}$

C) ${{H}_{2}}S{{O}_{4}}$

D) ${{H}_{2}}S{{O}_{4}}+S{{O}_{4}}$

• question_answer98) On strong heating $MgC{{l}_{2}}.6{{H}_{2}}O,$the product obtained is:

A) $MgC{{l}_{2}}$

B) $MgO$

C) $MgC{{l}_{2}}.2{{H}_{2}}O$

D) $MgC{{l}_{2}}.4{{H}_{2}}O$

• question_answer99) The highest first ionization potential is of:

A) carbon

B) boron

C) oxygen

D) nitrogen

• question_answer100) In sulphur detection of an organic compound, sodium nitroprusside solution is added to sodium extract. Formation of violet colour is due to:

A) $N{{a}_{3}}Fe{{(CN)}_{6}}$

B) $N{{a}_{3}}[Fe{{(CN)}_{5}}NOS]$

C) $Fe{{(CNS)}_{3}}$

D) None of these

• question_answer101) The eccentricity of the ellipse$9{{x}^{2}}+5{{y}^{2}}-30y=0$is:

A) 1/3

B) 2/3

C) 3/4

D) none of these

• question_answer102) The maximum value of $12\sin \theta -9{{\sin }^{2}}\theta$is:

A) 3

B) 4

C) 5

D) none of these

• question_answer103) if $\cos {{20}^{o}}=k$and $\cos x=2{{k}^{2}}-1,$then the possible values of $x$between ${{0}^{o}}$and ${{360}^{o}}$are:

A) ${{140}^{o}}$and${{270}^{o}}$

B) ${{40}^{o}}$and${{140}^{o}}$

C) ${{40}^{o}}$and ${{320}^{o}}$

D) ${{50}^{o}}$and ${{130}^{o}}$

• question_answer104) $\int_{{}}^{{}}{{{5}^{{{5}^{{{5}^{x}}}}}}.}{{5}^{{{5}^{x}}}}{{.5}^{x}}dx$is equal to:

A) $\frac{{{5}^{{{5}^{x}}}}}{{{(log5)}^{3}}}+c$

B) ${{5}^{{{5}^{{{5}^{x}}}}}}{{(log5)}^{3}}+c$

C) $\frac{{{5}^{{{5}^{{{5}^{x}}}}}}}{{{(log5)}^{3}}}+c$

D) none of these

• question_answer105) If $\cos (\theta +\phi )=m\cos (\theta -\phi ),$then $\tan \theta$is equal to:

A) $[(1+m)/(1-m)]\tan \phi$

B) $[(1-m)/(1+m)]\tan \phi$

C) $[(1-m)/(1+m)]cot\phi$

D) $[(1+m)/(1-m)]sec\phi$

• question_answer106) The value of $\underset{x\to \infty }{\mathop{\lim }}\,\frac{\sqrt{1+{{x}^{4}}}-(1+{{x}^{2}})}{{{x}^{2}}}$is equal to

A) 0

B) $-1$

C) 2

D) none of these

• question_answer107) The roots of the equation $|{{x}^{2}}-x-6|=x+2$are

A) $-2,1,4$

B) $0,2,4$

C) $0,1,4$

D) $-2,2,4$

• question_answer108) The maximum number of real roots of the equation ${{x}^{2n}}-1=0$is:

A) 2

B) 3

C) $n$

D) $2n$

• question_answer109) If $\alpha ,\beta ,\gamma$are the angles when a directed line makes with the positive directions the coordinate axes, then ${{\sin }^{2}}\alpha +{{\sin }^{2}}\beta +{{\sin }^{2}}\gamma$is equal to:

A) 1

B) 2

C) 3

D) none of these

• question_answer110) The first and last terms of an AP are a and $l$ respectively. If S be the sum of all the terms of the AP, then common difference is:

A) $\frac{{{l}^{2}}-{{a}^{2}}}{2S-(l+a)}$

B) $\frac{{{l}^{2}}-{{a}^{2}}}{2S-(l-a)}$

C) $\frac{{{l}^{2}}+{{a}^{2}}}{2S+(l+a)}$

D) $\frac{{{l}^{2}}+{{a}^{2}}}{2S-(l+a)}$

• question_answer111) If the two lines of regression are$x+4y=3$and $3x+y=5,$then value of $x$ for $y=3$is:

A) $\frac{2}{3}$

B) $-9$

C) $~-4$

D) none of these

• question_answer112) The value of the following determinant $\left| \begin{matrix} 1 & 1 & 1 \\ a & b & c \\ {{a}^{3}} & {{b}^{3}} & {{c}^{3}} \\ \end{matrix} \right|$is:

A) $(a-b)(b-c)(c-a)(a+b+c)$

B) $abc(a+b)(b+c)(c+a)$

C) $(a-b)(b-c)(c-a)$

D) none of the above

• question_answer113) If $A=\left[ \begin{matrix} 1 & 3 \\ 3 & 10 \\ \end{matrix} \right],$then adjoint of A is:

A) $\left[ \begin{matrix} 10 & 3 \\ 3 & 1 \\ \end{matrix} \right]$

B) $\left[ \begin{matrix} 10 & -3 \\ -3 & 1 \\ \end{matrix} \right]$

C) $\left[ \begin{matrix} 1 & 3 \\ 3 & 10 \\ \end{matrix} \right]$

D) $\left[ \begin{matrix} -1 & -3 \\ -3 & 10 \\ \end{matrix} \right]$

• question_answer114) If $y=1+x+{{x}^{2}}+{{x}^{3}}+...,$$x$is equal to:

A) $\frac{y-1}{y}$

B) $\frac{1-y}{y}$

C) $\frac{y}{1-y}$

D) none of these

• question_answer115) $1+\frac{3}{2}+\frac{5}{{{2}^{2}}}+\frac{7}{{{2}^{3}}}+....\infty$is equal to:

A) 2

B) 6

C) 5

D) none of these

• question_answer116) If ${{a}_{r}}$is the coefficient of ${{x}^{r}}$ in the expansion of ${{(1+x+{{x}^{2}})}^{n}},$then ${{a}_{1}}-2{{a}_{2}}+3{{a}_{2}}-...-2n{{a}_{2n}}$is equal to:

A) 0

B) $n$

C) $-n$

D) $2n$

• question_answer117) $\underset{x\to 0}{\mathop{\lim }}\,\frac{{{e}^{1/x}}}{{{e}^{1/x+1}}}$is equal to:

A) 0

B) 1

C) does not exist

D) none of these

• question_answer118) If P is any point on the ellipse $81{{x}^{2}}+144{{y}^{2}}-1944$ whose foci are S and S. Then $SP+SP$ equals:

A) 3

B) $4\sqrt{6}$

C) 36

D) 324

• question_answer119) $\underset{x\to 0}{\mathop{\lim }}\,\frac{2{{\sin }^{2}}3x}{{{x}^{2}}}$is equal to:

A) 0

B) 1

C) 18

D) 36

• question_answer120) The solution of $\frac{dy}{dx}+\sqrt{\left( \frac{1-{{y}^{2}}}{1-{{x}^{2}}} \right)}=0$is:

A) ${{\tan }^{-1}}x+{{\cot }^{-1}}x=c$

B) ${{\sin }^{-1}}x+{{\sin }^{-1}}y=c$

C) ${{\sec }^{-1}}x+\cos e{{c}^{-1}}x=c$

D) none of the above

• question_answer121) If $x=(cos\theta +\theta sin\theta )$ $y=a(sin\theta -\theta cos\theta ),$then$\frac{dy}{dx}$is equal to:

A) $\cos \theta$

B) $\tan \theta$

C) $\sec \theta$

D) $\cos ec\,\theta$

• question_answer122) $\int_{1}^{x}{\frac{\log ({{x}^{2}})}{x}}dx$is equal to:

A) ${{(\log x)}^{2}}$

B) $\frac{1}{2}{{(\log x)}^{2}}$

C) $\frac{\log {{x}^{2}}}{2}$

D) none of these

• question_answer123) The two regression lines are $2x-7y+6=0$ and $7x-2y+1=0.~$ The correlation coefficient between $x$ and $y$is:

A) $-\frac{2}{3}$

B) $\frac{2}{7}$

C) $\frac{4}{9}$

D) none of these

• question_answer124) Simpsons one third rule for evolution$\int_{a}^{b}{f(x)dx}$ requires the interval [a, b] to be divided into:

A) an even number of sub-intervals of equal width

B) any number of sub-intervals

C) any number of sub-intervals of equal width

D) an odd number of sub-intervals of equal width

• question_answer125) If $\sin A=\sin B$and $\cos A=\cos B,$then A is equal to:

A) $2n\pi +B$

B) $2n\pi -B$

C) $n\pi +B$

D) $n\pi +B{{(-1)}^{n}}B$

• question_answer126) The number of diagonals that can be drawn in a Dolygon 15 sides, is:

A) 16

B) 60

C) 90

D) 80

• question_answer127) $\text{tan 1}{{\text{0}}^{\text{o}}}\text{+tan 3}{{\text{5}}^{\text{o}}}\text{+tan 1}{{\text{0}}^{\text{o}}}\text{ tan 3}{{\text{5}}^{\text{o}}}$is equal to:

A) 0

B) $\frac{1}{2}$

C) $-1$

D) 1

• question_answer128) If $\left| \begin{matrix} a+b & b+c & c+a \\ b+c & c+a & a+b \\ c+a & a+b & b+c \\ \end{matrix} \right|=k\left| \begin{matrix} a & b & c \\ b & c & a \\ c & a & b \\ \end{matrix} \right|$then k is equal to:

A) 1

B) 2

C) 3

D) 8

• question_answer129) If $a,b,c$are in AP, then ${{2}^{ax+1}},{{2}^{bx+1}},{{2}^{cx+1}},x\ne 0$area in:

A) AP

B) GP only when $x>0$

C) GP if $x<0$

D) GP

• question_answer130) If $\alpha$and $\beta$are the roots of the equation$a{{x}^{2}}+bx+c=0,$then $(1+\alpha +{{\alpha }^{2}})(1+\beta +{{\beta }^{2}})$is equal to:

A) 0

B) positive

C) negative

D) none of these

• question_answer131) The angle between the tangents drawn from the origin to the circle${{(x-7)}^{2}}+{{(y+1)}^{2}}=25$ is:

A) $\frac{\pi }{3}$

B) $\frac{\pi }{6}$

C) $\frac{\pi }{2}$

D) $\frac{\pi }{8}$

• question_answer132) The area of the circle whose centre is at (1, 2) and passing through (4, 6) is

A) $5\pi \,\text{sq}\,\text{unit}$

B) $10\pi \,\text{sq}\,\text{unit}$

C) $25\,\pi \,\,\text{sq}\,\text{unit}$

D) none of these

• question_answer133) The curve represented by$x=3(\cos t+\sin t),y=4(\cos t-\sin t)$is:

A) ellipse

B) parabola

C) hyperbola

D) circle

• question_answer134) The line $y=mx+1$is a tangent to the parabola ${{y}^{2}}=4x,$ if:

A) $m=1$

B) $~m=2$

C) $m=4$

D) $~m=3$

• question_answer135) $f(x)=\left| \begin{matrix} {{x}^{3}} & {{x}^{4}} & 3{{x}^{2}} \\ 1 & -6 & 4 \\ p & {{p}^{2}} & {{p}^{3}} \\ \end{matrix} \right|,$ here p is a constant, then$\frac{{{d}^{3}}f(x)}{d{{x}^{3}}}$is:

A) proportional to ${{x}^{2}}$

B) proportional to $x$

C) proportional to ${{x}^{3}}$

D) a constant

• question_answer136) $\int_{0}^{1.5}{[{{x}^{2}}]}\,dx$is:

A) $4+2\sqrt{2}$

B) $2+\sqrt{2}$

C) $2-\sqrt{2}$

D) none of these

• question_answer137) The rational number which is equal to the number $2.\overset{.}{\mathop{3}}\,\overset{.}{\mathop{5}}\,\overset{.}{\mathop{7}}\,$ with recurring decimal is:

A) $\frac{2355}{1001}$

B) $\frac{2370}{997}$

C) $\frac{2355}{999}$

D) none of these

• question_answer138) The differential coefficient of$f(\log x)$w.r.t$x,$ where $f(x)=\log x$is:

A) $\frac{x}{\log x}$

B) $\frac{\log x}{x}$

C) ${{(x\log x)}^{-1}}$

D) none of these

• question_answer139) There are six vertices of a regular hexagon are chosen at random, then the possibility that the triangle with three vertices is equilateral, is equal to:

A) $\frac{1}{2}$

B) $\frac{1}{3}$

C) $\frac{1}{10}$

D) $\frac{1}{20}$

• question_answer140) The number of vectors of unit length perpendicular to the two vectors $a=(1,1,0)$ and $b=(0,1,1)$is:

A) one

B) two

C) three

D) infinite

• question_answer141) Three identical dice are rolled. The probability that same number will appear on each of them will be:

A) $\frac{1}{6}$

B) $\frac{1}{36}$

C) $\frac{1}{18}$

D) $\frac{3}{28}$

• question_answer142) If sets A and B are defined as $A=\{(x,y):y={{e}^{x}},x\in R\}$and $B=\{(x,y):y=x,x\in R\}$then

A) $B\subset A$

B) $A\subset B$

C) $A\cap B=\phi$

D) $A\cup B=A$

• question_answer143) Given $A={{\sin }^{2}}\theta +{{\cos }^{4}}\theta ,$then for all real value of $\theta :$

A) $1\le A\le 2$

B) $\frac{3}{4}\le A\le 1$

C) $\frac{13}{16}\le A<1$

D) $\frac{3}{4}\le A\le \frac{13}{16}$

• question_answer144) If the vectors $a\hat{i}+\hat{j}+\hat{k},\hat{i}+b\hat{j}+\hat{k},\hat{i}+\hat{j}+c\hat{k}$ $(a\ne 1,b\ne 1,c\ne 1)$are coplanar, then the value of $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$:is

A) 0

B) 1

C) -1

D) 2

• question_answer145) A lady gives a dinner party for six guest. The number of ways in which they may be selected from among ten friends, if two of the friends will not attends the party together, is:

A) 112

B) 140

C) 164

D) none of these

• question_answer146) Remainder of ${{x}^{64}}+\text{ }{{x}^{27}}+1$divided by $x+1$ is:

A) 0

B) 1

C) 2

D) 3

• question_answer147) If the imaginary part of$\frac{2z+1}{iz+1}$ is $-2,$ then the locus of the point represented by z is a:

A) circle

B) straight line

C) parabola

D) none of these

• question_answer148) If${{z}_{1}},{{z}_{2}},{{z}_{3}}$ are in AP(${{z}_{1}},{{z}_{2}},{{z}_{3}}$are complex numbers), then they lies on a :

A) circle

B) straight line

C) parabola

D) none of these

• question_answer149) Area of the region bounded by the curve $y=\tan x,$tangent drawn to the curve at $x=\frac{\pi }{4}$ and the $x-$axis is:

A) $\log \sqrt{2}\,\text{sq}\,\text{unit}$

B) $\left( \log \sqrt{2}+\frac{1}{4} \right)\,\text{sq}\,\text{unit}$

C) $\left( \log \sqrt{2}-\frac{1}{4} \right)\text{sq}\,\text{unit}$

D) $\frac{1}{4}\text{sq}\,\text{unit}$

• question_answer150) The number of values of $x$ in the interval $[0,2\pi ],$where the function$f(x)=\cos x$$+\,\cos \sqrt{2x}$ attains its maximum, is:

A) 0

B) 1

C) 2

D) infinite

You will be redirected in 3 sec 