question_answer1) The factors of \[{{x}^{2}}+xy-2xz-2yz\] are
A) \[\Rightarrow \] done clear
B) \[P(-a)=0\] done clear
C) \[P(x)={{x}^{3}}-3{{x}^{2}}+4x-12\] done clear
D) \[P(x)={{x}^{3}}-3{{x}^{2}}+4x-12\] done clear
View Solution play_arrowquestion_answer2) The factors of \[P(3)=0\] are
A) \[P(3)=0\] done clear
B) \[P(3)={{3}^{3}}-{{3}^{2}}+4\times 3-12\] done clear
C) \[27-27+12-12=0\] done clear
D) None of these done clear
View Solution play_arrowquestion_answer3) The factors of \[P(3)=0\] are
A) \[\therefore \] done clear
B) \[(x-3)\] done clear
C) \[\frac{4-x}{7-x}=\frac{2}{5}\] done clear
D) \[20-5x=14-2x\] done clear
View Solution play_arrowquestion_answer4) The value of\[3x=6\] is
A) \[\Rightarrow \] done clear
B) 1 done clear
C) \[x=2\] done clear
D) 0.1 done clear
View Solution play_arrowquestion_answer5) One of the factors of \[10x+x+3=11x+3\] is
A) \[=x+x+3=2x+3\] done clear
B) \[\frac{11x+3}{2x+3}=\frac{4}{1}\] done clear
C) \[11x+3=8x+12\] done clear
D) \[3x=9\] done clear
View Solution play_arrowA) 0 done clear
B) 2 done clear
C) 4 done clear
D) 6 done clear
View Solution play_arrowquestion_answer7) The factors of \[\frac{3}{2}\] are
A) \[\left( x-3\sqrt{3} \right)\left( \sqrt{3x}+2 \right)\] done clear
B) \[\frac{7}{2}\] done clear
C) \[\frac{7}{2}\] done clear
D) \[\frac{5}{2}\] done clear
View Solution play_arrowA) \[\frac{5}{2}\] done clear
B) \[\frac{a+5}{3a-5}=\frac{a-8}{a+8}\] done clear
C) \[2{{(a+b)}^{2}}-9(a+b)-5\] done clear
D) None of these done clear
View Solution play_arrowquestion_answer9) The solution of \[a+b+5,2a+2b-1\] is
A) \[a+b-5,2a+ab+1\] done clear
B) \[a-b+5,2a-2b+5\] done clear
C) \[a+b+c=9\] done clear
D) \[ab+bc+ca=26,\] done clear
View Solution play_arrowA) 290 done clear
B) 280 done clear
C) 240 done clear
D) 180 done clear
View Solution play_arrowA) 20 years done clear
B) 23 years done clear
C) 25 years done clear
D) 30 years done clear
View Solution play_arrowA) 500 done clear
B) 600 done clear
C) 700 done clear
D) 800 done clear
View Solution play_arrowA) 160 done clear
B) 180 done clear
C) 200 done clear
D) 320 done clear
View Solution play_arrowA) 126 done clear
B) 132 done clear
C) 136 done clear
D) 148 done clear
View Solution play_arrowquestion_answer15) If a number increased by 8% of itself gives 135, then that number is
A) 112 done clear
B) 100 done clear
C) 125 done clear
D) None of these done clear
View Solution play_arrowA) 12 days done clear
B) 24 days done clear
C) 36 days done clear
D) 16 days done clear
View Solution play_arrowA) 1km done clear
B) 2km done clear
C) 3km done clear
D) 4km done clear
View Solution play_arrowA) \[1/2(a+b+c)\] done clear
B) \[a+b+c\] done clear
C) \[3(a+b+c)\] done clear
D) \[2(abc)\] done clear
View Solution play_arrowquestion_answer19) What must be added to x/y to make y/x?
A) \[x=\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\] done clear
B) \[{{x}^{3}}+\frac{1}{{{x}^{3}}}\] done clear
C) \[3x-2=\frac{8}{x}.\] done clear
D) \[\left( -\frac{3}{4},2 \right)\] done clear
View Solution play_arrowquestion_answer20) If \[(2,2)\] and y = 1, then the value of \[\left( -\frac{4}{3},2 \right)\] is:
A) \[\frac{1}{x}-\frac{3}{4}+\frac{1}{2+x}=0\] done clear
B) \[\left( 2,-\frac{3}{4} \right)\] done clear
C) \[(5,4)\] done clear
D) \[(-8,0)\] done clear
View Solution play_arrowA) \[(5,4)\] done clear
B) 0 done clear
C) 1 done clear
D) 6 done clear
View Solution play_arrowA) 27 done clear
B) 27 done clear
C) 3.1 done clear
D) 2.1 done clear
View Solution play_arrowquestion_answer23) If \[x+y=2\]and \[x-y=1,\] then:
A) \[P(x)={{a}_{0}}+{{a}_{1}}x+{{a}_{2}}{{x}^{2}}+.....+{{a}_{n}}{{x}^{n}}\] done clear
B) \[{{a}_{0}},{{a}_{1}},{{a}_{2}},.....,{{a}_{n}}\] done clear
C) \[{{a}_{0}}+{{a}_{1}}x+{{a}_{2}}{{x}^{2}}+.....+{{a}_{n}}{{x}^{n}}\] done clear
D) \[{{a}_{0}},{{a}_{1}},{{a}_{2}}......{{a}_{n}}\] done clear
View Solution play_arrowA) \[f(x)=a{{x}^{2}}+bx+c\ne 0\] done clear
B) \[3xy+7x{{y}^{2}}-8x{{y}^{3}}+7{{y}^{2}}{{x}^{2}}\] done clear
C) \[\frac{{{a}^{3}}-3}{b}\] done clear
D) \[\therefore \] done clear
View Solution play_arrowA) \[{{(a+b)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}={{a}^{3}}+{{b}^{3}}+3ab(a+b)\] done clear
B) \[{{(a-b)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}}={{a}^{3}}-{{b}^{3}}-3ab(a-b)\] done clear
C) \[{{a}^{3}}+{{b}^{3}}=(a+b)({{a}^{2}}-ab+{{b}^{2}})\] done clear
D) none of these done clear
View Solution play_arrowA) 9 done clear
B) 10 done clear
C) 11 done clear
D) 13 done clear
View Solution play_arrowA) 1 done clear
B) 2 done clear
C) 3 done clear
D) none of these done clear
View Solution play_arrowquestion_answer28) The value of \[P(x)={{x}^{3}}+{{x}^{2}}+2x+3\] is
A) \[x+2=0\] done clear
B) \[x=-2\] done clear
C) \[P(x)={{x}^{3}}+{{x}^{2}}+2x+3\] done clear
D) \[P(-2)={{(-2)}^{3}}+{{(-2)}^{2}}+2(-2)+3\] done clear
View Solution play_arrowquestion_answer29) If two number differ by 3 and their product is 504, then the number are
A) 21, 24 or \[-\]24, \[-\]21 done clear
B) 30, 31 or \[-\]30, \[-\]31 done clear
C) 40, 41 or \[-\]40, \[-\]41 done clear
D) none of these done clear
View Solution play_arrowquestion_answer30) The additive inverse of \[=-8+4-4+3=-12+7=-5\]is
A) \[\Rightarrow \] done clear
B) \[P(-a)=0\] done clear
C) \[P(x)={{x}^{3}}-3{{x}^{2}}+4x-12\] done clear
D) none of these done clear
View Solution play_arrowA) \[P(3)=0\] done clear
B) \[P(3)={{3}^{3}}-{{3}^{2}}+4\times 3-12\] done clear
C) 1 done clear
D) 0 done clear
View Solution play_arrowquestion_answer32) The equation for the statement: 'half of a number added to 10 is 15'.
A) \[27-27+12-12=0\] done clear
B) \[P(3)=0\] done clear
C) \[\therefore \] done clear
D) \[(x-3)\] done clear
View Solution play_arrowquestion_answer33) In \[P(x)\]the value of a' is
A) \[-\]1 done clear
B) \[ax+b=0\] done clear
C) \[a\ne 0,x\] done clear
D) +1 done clear
View Solution play_arrowA) 45 years done clear
B) 30 years done clear
C) 15 years done clear
D) 10 years done clear
View Solution play_arrowquestion_answer35) The solution of \[ax=-b\]is
A) \[x=-\frac{b}{a}\] done clear
B) \[ax+by+c=0\] done clear
C) \[ax+by+d=0\] done clear
D) \[a\ne 0,\] done clear
View Solution play_arrowquestion_answer36) If 20% of 60% of a number is 144, then the number is
A) 1200 done clear
B) 2880 done clear
C) 8640 done clear
D) None of these done clear
View Solution play_arrowA) 500 done clear
B) 600 done clear
C) 700 done clear
D) 800 done clear
View Solution play_arrowA) 605 done clear
B) 560 done clear
C) 650 done clear
D) None of these done clear
View Solution play_arrowA) \[-\]2 done clear
B) \[-\]1 done clear
C) 2 done clear
D) 1 done clear
View Solution play_arrowA) 63 done clear
B) 36 done clear
C) 48 done clear
D) Data is not sufficient done clear
View Solution play_arrowA) 24 done clear
B) 32 done clear
C) 12 done clear
D) 48 done clear
View Solution play_arrowquestion_answer42) The ratio of two numbers is a : b. If first of them is x, then second is
A) \[b\ne 0\] done clear
B) \[3x-2y=4\] done clear
C) \[x+y-3=0\] done clear
D) \[3x-2y=4\] done clear
View Solution play_arrowA) Rs. 450 done clear
B) Rs. 580 done clear
C) Rs. 640 done clear
D) Rs. 1260 done clear
View Solution play_arrowA) 9, 11 done clear
B) 11, 13 done clear
C) 11, 19 done clear
D) 9, 13 done clear
View Solution play_arrowA) \[\Rightarrow \] done clear
B) \[-5y=-5\] done clear
C) 5km done clear
D) None of these done clear
View Solution play_arrowA) 48 done clear
B) 70 done clear
C) 72 done clear
D) 84 done clear
View Solution play_arrowA) 24 done clear
B) 42 done clear
C) 64 done clear
D) 46 done clear
View Solution play_arrowquestion_answer48) The three even consecutive integers whose sum is 90 are
A) 26, 30, 34 done clear
B) 24, 32, 34 done clear
C) 24, 28, 38 done clear
D) 28, 30, 32 done clear
View Solution play_arrowquestion_answer49) Which of the following expressions is a polynomial?
A) \[x+y-3=0\] done clear
B) \[x+1-3=0\] done clear
C) \[x-2=0\] done clear
D) \[\Rightarrow \] done clear
View Solution play_arrowquestion_answer50) The degree of the polynomial \[x=2\] is
A) 3 done clear
B) 4 done clear
C) 2 done clear
D) can't be determined done clear
View Solution play_arrowquestion_answer51) The product of \[({{x}^{2}}+3x+5)\] and \[({{x}^{2}}-1)\] is
A) \[a{{x}^{2}}+bx+c=0\] done clear
B) \[a\ne 0\] done clear
C) \[4{{x}^{2}}-4x-3=0\] done clear
D) none of these done clear
View Solution play_arrowA) \[a{{x}^{2}}+bx+c=0\] done clear
B) \[a{{x}^{2}}\] done clear
C) \[{{x}^{2}},b\] done clear
D) \[a{{x}^{2}}+bx+c=0\] done clear
View Solution play_arrowquestion_answer53) The remainder obtained when \[a\ne 0\]is divided by \[b\ne 0\] is
A) \[c\ne 0\] done clear
B) \[a{{x}^{2}}+bx+c=0\] done clear
C) \[a\ne 0\] done clear
D) None of these done clear
View Solution play_arrowA) \[4{{x}^{2}}+3x=0,5{{x}^{2}}\] done clear
B) \[a{{x}^{2}}+bx+c=0\] done clear
C) \[a{{\alpha }^{2}}+b\alpha +c=0\] done clear
D) \[5{{x}^{2}}-7x-6=0.\] done clear
View Solution play_arrowquestion_answer55) If\[\because \] Then a = _____.
A) 1 done clear
B) \[5{{(2)}^{2}}-7(2)-6=0\] done clear
C) \[20-14-6=0\] done clear
D) none of these done clear
View Solution play_arrowquestion_answer56) The product of two factors with unlike signs is______.
A) positive done clear
B) Negative done clear
C) Cannot be determined done clear
D) None of these done clear
View Solution play_arrowA) 81 done clear
B) \[-\] 49 done clear
C) 1 done clear
D) None of these done clear
View Solution play_arrowquestion_answer58) If \[3x-7y=10\] and \[xy=-1,\] then the value of \[9{{x}^{2}}+49{{y}^{2}}\] is
A) 58 done clear
B) 142 done clear
C) 104 done clear
D) \[-\]104 done clear
View Solution play_arrowquestion_answer59) \[{{x}^{2}}-36=0\]
A) \[{{x}^{2}}-36=0\] done clear
B) \[\Rightarrow \] done clear
C) \[{{x}^{2}}-{{6}^{2}}=0\] done clear
D) 0 done clear
View Solution play_arrowquestion_answer60) If \[\Rightarrow \], then the value of \[(x-6)(x+6)=0\] is
A) Greater than 2 done clear
B) less than 2 done clear
C) Greater than 4 done clear
D) less than 4 done clear
View Solution play_arrowquestion_answer61) The value of\[\frac{{{(67.542)}^{2}}-{{(32.458)}^{2}}}{75.458-40.374}\]is
A) 1 done clear
B) 10 done clear
C) 100 done clear
D) None of these done clear
View Solution play_arrowquestion_answer62) If \[x+y=6\] and \[3x-y=4,\]then \[x-y\] is equal to
A) \[x=6\] done clear
B) 0 done clear
C) 2 done clear
D) 4 done clear
View Solution play_arrowquestion_answer63) The value of the product \[x=-6\] at \[{{x}^{2}}+5x+6=0\] is
A) 150 done clear
B) 148 done clear
C) 152 done clear
D) None of these done clear
View Solution play_arrowquestion_answer64) \[\Rightarrow \]
A) 0 done clear
B) \[{{x}^{2}}+3x+2x+6=0\] done clear
C) 1 done clear
D) None of these done clear
View Solution play_arrowquestion_answer65) \[11x+12y=58\]and \[12x+11y=57,\] the value of \[4(x+y)\] is...
A) 5 done clear
B) 12 done clear
C) 20 done clear
D) 24 done clear
View Solution play_arrowquestion_answer66) If \[\frac{2}{x}+3y=15\] and \[\frac{5}{x}-4y=3\] the value of x is
A) 1/2 done clear
B) 2 done clear
C) 1/3 done clear
D) 3 done clear
View Solution play_arrowA) 20 done clear
B) 35 done clear
C) 18 done clear
D) 21 done clear
View Solution play_arrowA) 39yrs done clear
B) 48yrs done clear
C) 30yrs done clear
D) 45yrs done clear
View Solution play_arrowA) 48 done clear
B) 60 done clear
C) 80 done clear
D) 46 done clear
View Solution play_arrowA) 1849 done clear
B) 1764 done clear
C) 1829 done clear
D) 1936 done clear
View Solution play_arrowA) 26 years done clear
B) 28 years done clear
C) 30 years done clear
D) 35 years done clear
View Solution play_arrowA) 27 years done clear
B) 21 years done clear
C) 25 years done clear
D) 22 years done clear
View Solution play_arrowA) 40 years done clear
B) 45 years done clear
C) 48 years done clear
D) 50 years done clear
View Solution play_arrowA) 41 done clear
B) 23 done clear
C) 14 done clear
D) 32 done clear
View Solution play_arrowquestion_answer75) If \[x+2=0\]find the value of\[\Rightarrow \].
A) 3/4 done clear
B) 2/3 done clear
C) 4/3 done clear
D) 4/5 done clear
View Solution play_arrowquestion_answer76) What are the roots of the equation \[x=-3\]
A) \[x=-2\] done clear
B) \[(x-y)(x+2z)\] done clear
C) \[(x+y)(x-2z)\] done clear
D) \[(x-y)(x-2z)\] done clear
View Solution play_arrowquestion_answer77) The solution set of \[(x+y)(y+2z)\] is
A) \[\frac{{{x}^{2}}}{4}-\frac{{{y}^{2}}}{9}\] done clear
B) \[\left( \frac{x}{4}+\frac{y}{9} \right),\left( \frac{x}{4}-\frac{y}{9} \right)\] done clear
C) \[\left( \frac{x}{2}+\frac{y}{9} \right),\left( \frac{x}{2}-\frac{y}{9} \right)\] done clear
D) \[\left( \frac{x}{2}+\frac{y}{3} \right),\left( \frac{x}{2}-\frac{y}{3} \right)\] done clear
View Solution play_arrowquestion_answer78) The roots of \[1-{{p}^{3}}\] are
A) \[\frac{3}{2}\]and\[\frac{3}{2}\] done clear
B) \[\frac{7}{2}\]and\[\frac{7}{2}\] done clear
C) \[\frac{5}{2}\]and\[\frac{5}{2}\] done clear
D) None of these done clear
View Solution play_arrowquestion_answer79) The possible values of a in \[0.01\] are
A) 0 and 0 done clear
B) 9 and 0 done clear
C) 0 and 21 done clear
D) 0 and 9 done clear
View Solution play_arrowA) 15km/hr done clear
B) 20km/hr done clear
C) 24km/hr done clear
D) 18km/hr done clear
View Solution play_arrowA) 180 done clear
B) 140 done clear
C) 240 done clear
D) 100 done clear
View Solution play_arrowA) 9,6 or 9,-6 done clear
B) 5,6 or 5,-6 done clear
C) 9,5 or 9,-5 done clear
D) None of these done clear
View Solution play_arrowquestion_answer83) Factors of \[{{x}^{2}}+\frac{1}{{{x}^{2}}}+2-2x-\frac{2}{x}\] are
A) \[x-\frac{1}{x}\] done clear
B) \[x+\frac{1}{x}-1\] done clear
C) \[x+\frac{1}{x}\] done clear
D) None of these done clear
View Solution play_arrowA) Rs. 25 done clear
B) Rs. 10 done clear
C) Rs. 35 done clear
D) Rs. 40 done clear
View Solution play_arrowA) 4:3 done clear
B) 3:4 done clear
C) 2:5 done clear
D) 5:2 done clear
View Solution play_arrowA) 27 done clear
B) 29 done clear
C) 495 done clear
D) 729 done clear
View Solution play_arrowquestion_answer87) Solve for \[x:\frac{x-a}{b+c}+\frac{x-b}{c+a}+\frac{x-c}{a+b}=3\]
A) \[(a+b+nc)\] done clear
B) \[m+n\] done clear
C) \[\sqrt{3}{{x}^{2}}+11x+6\sqrt{3}\] done clear
D) \[\left( x-3\sqrt{3} \right)\left( \sqrt{3}x+2 \right)\] done clear
View Solution play_arrowA) 15 done clear
B) 30 done clear
C) 16 done clear
D) 20 done clear
View Solution play_arrowA) 12,27 done clear
B) 24,15 done clear
C) 15,24 done clear
D) 27,12 done clear
View Solution play_arrowA) 32 done clear
B) 14 done clear
C) 41 done clear
D) 23 done clear
View Solution play_arrowA) 91 done clear
B) 64 done clear
C) 55 done clear
D) 82 done clear
View Solution play_arrowA) 15 done clear
B) 12 done clear
C) 21 done clear
D) 51 done clear
View Solution play_arrowA) 42 years done clear
B) 43 years done clear
C) 44 years done clear
D) 45 years done clear
View Solution play_arrowA) 644 done clear
B) 512 done clear
C) 488 done clear
D) 348 done clear
View Solution play_arrowquestion_answer95) Find the roots of \[\left( x+3\sqrt{3} \right)\left( \sqrt{3}x+2 \right)\]
A) \[10t+u+1\] done clear
B) \[100t+10u+1\] done clear
C) \[t+u+1\] done clear
D) None of these done clear
View Solution play_arrowA) \[x=1\] done clear
B) \[x=-1\] done clear
C) \[x=2\] done clear
D) \[x=-3\] done clear
View Solution play_arrowquestion_answer97) The roots of\[\frac{3}{14}\]are
A) \[\frac{3}{14}\] done clear
B) \[{{10}^{o}}\] done clear
C) \[{{20}^{o}}\] done clear
D) \[{{30}^{o}}\] done clear
View Solution play_arrowquestion_answer98) Linear polynomials is
A) A polynomial of degree two in one variable. done clear
B) A polynomial of degree three. done clear
C) A polynomial of degree 1 in one variable. done clear
D) A polynomial of degree zero. done clear
View Solution play_arrowColumn - I | Column- II |
(A) Polynomial whose zeroes are \[{{40}^{o}}\] | (p) \[\frac{{{y}^{2}}-{{x}^{2}}}{yx}\] |
(B) Polynomial whose zeroes are 3 and -2 is | (q) \[\frac{xy}{x+y}\] |
(C) Polynomial whose zeroes are \[\frac{{{x}^{2}}-{{y}^{2}}}{{{x}^{2}}+{{y}^{2}}}\] is | (r) \[x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\] |
(D) Polynomial whose zeroes \[\frac{x-y}{x-3y}\] and \[\frac{5}{\sqrt{6}-4}\] is | (s) \[\frac{5}{\sqrt{6}+4}\] |
A) \[\frac{\sqrt{6}-4}{5}\] done clear
B) \[\frac{\sqrt{6}+4}{5}\] done clear
C) \[\frac{1}{a-3b}\] done clear
D) \[b=\frac{a}{3}\] done clear
View Solution play_arrowColumn - I | Column- II |
(A) Zeroes of \[f(x)=(x-1)\]\[(x-2)\,(x-3)\] are | (p) 1 |
(B) Zeroes of \[x+y=2\]are | (q) 2 |
(C) Zeroes of \[x-y=1,\] are | (r) 3 |
(D) Zeroes of \[x=\frac{3}{2},y=\frac{1}{2}\] are | (s) -2 |
A) \[x=0,y=3\] done clear
B) \[x=1\frac{1}{2},y=6\] done clear
C) \[y=0,x=6\] done clear
D) \[x+y=a\] done clear
View Solution play_arrowColumn - I | Column- II |
(A) \[xy=b,\] | (p) \[\frac{1}{{{x}^{3}}}+\frac{1}{{{y}^{3}}}\] |
(B) \[\frac{{{a}^{3}}-3ab}{{{b}^{3}}}\] | (q) \[\frac{{{a}^{3}}-3a}{{{b}^{3}}}\] |
(C) \[\frac{{{a}^{3}}-3}{h}\] | (r) \[\frac{{{a}^{3}}-3}{{{b}^{2}}}\] |
(D) \[x=\frac{1}{2}\] | (s) \[\begin{align} & x+\overset{1}{\mathop{\_\_\_\_\_\_\_}}\, \\ & 1+\overset{1}{\mathop{\_\_\_\_}}\, \\ & 1+\frac{1}{x} \\ \end{align}\] |
(E) \[\frac{5}{4}\] | (t) \[\frac{4}{5}\] |
(F) \[\frac{3}{4}\] | (u) \[{{2}^{2x-y}}=32\] |
A) \[{{2}^{x+y}}=16\]\[{{x}^{2}}+{{y}^{2}}\] done clear
B) \[x-\frac{1}{x-2}=2-\frac{1}{x-2},\]\[(E)\to (t),\,(F)\to (p)\] done clear
C) \[{{x}^{2}}\]\[{{x}^{a+b+c}}\] done clear
D) \[{{x}^{abc}}\]\[{{x}^{0}}\] done clear
View Solution play_arrowColumn - I | Column - II |
(A) Solution of \[\frac{{{x}^{5}}-7{{x}^{2}}+18}{{{x}^{3}}-2}\]is | (p) ? 8 |
(B) Solution of \[\frac{{{x}^{5}}+7{{x}^{2}}+18}{{{x}^{3}}-2}\] | (q) 0.6 |
(C) Solution of \[\frac{-{{x}^{5}}-7{{x}^{2}}+18}{{{x}^{3}}-2}\] is | (r) \[-\frac{3}{4}\] |
(D) Solution of \[0.25(4t-3)\]\[=0.05(10t-9)\] | (s) 5 |
(E) Solution of\[\frac{{{x}^{2}}-9}{{{x}^{2}}+3}\] is | (t) 2.4 |
A) \[\frac{{{x}^{3}}+2{{x}^{2}}-x}{{{x}^{2}}-9}\]\[(D)\to (q),(E)\to (s)\] done clear
B) \[\frac{x}{2}+10+5\]\[(D)\to (p),(E)\to (t)\] done clear
C) \[\frac{x}{2}+15=10\]\[(D)\to (q),(E)\to (p)\] done clear
D) \[6(2a-1)+8=14,\]\[(D)\to (q),(E)\to (p)\] done clear
View Solution play_arrowColumn - I | Column- II |
(A) If \[2x-y-5\] and \[3x+2y=11,\]then \[x+y=\] | (p) no solution |
(B) If \[x+2y=5\]\[2x+3y=8,\] then \[x+y=\] | (q) 2 |
(C) If \[2x+3y=7\] \[6x+9y=1,\]then there is | (r) 3 |
(D) If \[3x-4y=7\]\[5x+2y=3,\]then \[7x+5y=\] | (s) 4 |
A) \[(A)\to (q),(B)\to (r),(C)\to (s),(D)\to (p)\] done clear
B) \[(A)\to (s),(B)\to (r),(C)\to (p),(D)\to (q)\] done clear
C) \[(A)\to (r),(B)\to (s),(C)\to (p),(D)\to (q)\] done clear
D) \[(A)\to (s),(B)\to (r),(C)\to (q),(D)\to (p)\] done clear
View Solution play_arrowA) (i), (ii) and (iii) only done clear
B) (iii) only done clear
C) (i), (iv) only done clear
D) (ii) only done clear
View Solution play_arrowA) (i) and (iv) done clear
B) (ii) and (iii) done clear
C) (i) and (iii) done clear
D) (iii) and (iv) done clear
View Solution play_arrowA) Both A and R are individually true and R is the correct explanation of A. done clear
B) Both A and R are individually true but R is not the correct explanation of A. done clear
C) A is true but R is false done clear
D) A is false but R is true done clear
View Solution play_arrowA) Both A and R are individually true and R is the correct explanation of A. done clear
B) Both A and R are individually true but R is not the correct explanation of A. done clear
C) A is true but R is false done clear
D) A is false but R is true done clear
View Solution play_arrowA) Both A and R are individually true and R is the correct explanation of A. done clear
B) Both A and R are individually true but R is not the correct explanation of A. done clear
C) A is true but R is false done clear
D) A is false but R is true done clear
View Solution play_arrowA) Both A and R are individually true and R is the correct explanation of A. done clear
B) Both A and R are individually true but R is not the correct explanation of A. done clear
C) A is true but R is false done clear
D) A is false but R is true done clear
View Solution play_arrowYou need to login to perform this action.
You will be redirected in
3 sec