-
question_answer1)
ABCD a parallelogram,\[{{A}_{1}}\] and \[{{B}_{1}}\] are the midpoints of sides BC and CD, respectively. If \[\overrightarrow{A{{A}_{1}}}+\,\overrightarrow{A{{B}_{1}}}=\lambda \overrightarrow{AC}\], then \[\lambda \], is equal to
A)
\[\frac{1}{2}\] done
clear
B)
1 done
clear
C)
\[\frac{3}{2}\] done
clear
D)
2 done
clear
View Solution play_arrow
-
question_answer2)
Two particles start simultaneously from the same point and move along two straight lines, one with uniform velocity \[\vec{u}\] and the other from rest with uniform acceleration\[\vec{f}\]. Let \[\alpha \] be the angle between their directions of motion. The relative velocity of the second particle w.r.t. the first is least after a time
A)
\[\frac{u\,\,\cos \,\,\alpha }{f}\] done
clear
B)
\[\frac{u\,\,\sin \,\,\alpha }{f}\] done
clear
C)
\[\frac{f\,\,\cos \,\,\alpha }{u}\] done
clear
D)
\[u\,\,\sin \,\,\alpha \] done
clear
View Solution play_arrow
-
question_answer3)
A force \[\vec{F}=3\hat{i}+2\hat{j}-4\hat{k}\] is applied at the point (1, -1, 2). What is the moment of the force about the point (2, -1, 3)?
A)
\[\hat{i}+4\hat{j}+4\hat{k}\] done
clear
B)
\[2\hat{i}+\hat{j}+2\hat{k}\] done
clear
C)
\[2\hat{i}-7\hat{j}-2\hat{k}\] done
clear
D)
\[2\hat{i}+4\hat{j}-\hat{k}\] done
clear
View Solution play_arrow
-
question_answer4)
What is a vector of unit length orthogonal to both the vectors \[\hat{i}+\hat{j}+\hat{k}\] and\[2\hat{i}+3\hat{j}-\hat{k}\]?
A)
\[\frac{-4\hat{i}+3\hat{j}-\hat{k}}{\sqrt{26}}\] done
clear
B)
\[\frac{-4\hat{i}+3\hat{j}+\hat{k}}{\sqrt{26}}\] done
clear
C)
\[\frac{-3\hat{i}+2\hat{j}-\hat{k}}{\sqrt{14}}\] done
clear
D)
\[\frac{-3\hat{i}+2\hat{j}+\hat{k}}{\sqrt{14}}\] done
clear
View Solution play_arrow
-
question_answer5)
If the vectors \[\alpha \hat{i}+\alpha \hat{j}+\gamma \hat{k},\text{ }\hat{i}+\hat{k}\] and \[\gamma \hat{i}+\gamma \hat{j}+\beta \hat{k}\] lie on a plane, where \[\alpha ,\beta \] and \[\gamma \] are distinct non-negative numbers, then \[\gamma \] is
A)
Arithmetic mean of \[\alpha \] and \[\beta \] done
clear
B)
Geometric mean of \[\alpha \] and \[\beta \] done
clear
C)
Harmonic mean of \[\alpha \] and \[\beta \] done
clear
D)
None of the above done
clear
View Solution play_arrow
-
question_answer6)
The adjacent sides AB and AC of a triangle ABC are represented by the vectors \[-2\hat{i}+3\hat{j}+2\hat{k}\] and \[-4\hat{i}+5\hat{j}+2\hat{k}\] respectively. The area of the triangle ABC is
A)
6 square units done
clear
B)
5 square units done
clear
C)
4 square units done
clear
D)
3 square units done
clear
View Solution play_arrow
-
question_answer7)
Resolved part of vector \[\vec{a}\] along vector \[\vec{b}\] is \[{{\vec{a}}_{1}}\] and that perpendicular to \[\vec{b}\] is \[{{\vec{a}}_{2}}\] then \[{{\vec{a}}_{1}}\times {{\vec{a}}_{2}}\] is equal to
A)
\[\frac{(\vec{a}\times \vec{b})\cdot \vec{b}}{{{\left| {\vec{b}} \right|}^{2}}}\] done
clear
B)
\[\frac{(\vec{a}\cdot \vec{b})\vec{a}}{{{\left| {\vec{a}} \right|}^{2}}}\] done
clear
C)
\[\frac{(\vec{a}\cdot \vec{b})(\vec{b}\times \vec{a})}{{{\left| {\vec{b}} \right|}^{2}}}\] done
clear
D)
\[\frac{(\vec{a}\cdot \vec{b})(\vec{b}\times \vec{a})}{\left| \vec{b}\times \vec{a} \right|}\] done
clear
View Solution play_arrow
-
question_answer8)
The components of a vector \[\vec{a}\] along and perpendicular to a non-zero vector \[\vec{b}\] are
A)
\[\left( \frac{\vec{a}.\vec{b}}{{{\left| {\vec{b}} \right|}^{2}}} \right)\vec{b}\And \vec{a}-\left( \frac{\vec{a}.\vec{b}}{{{\left| {\vec{b}} \right|}^{2}}} \right)\vec{b}\] done
clear
B)
\[\left( \frac{\vec{a}.\vec{b}}{{{\left| {\vec{a}} \right|}^{2}}} \right)\vec{b}\And \vec{a}+\left( \frac{\vec{a}.\vec{b}}{{{\left| {\vec{a}} \right|}^{2}}} \right)\vec{b}\] done
clear
C)
\[\left( \frac{\vec{a}.\vec{b}}{{{\left| {\vec{a}} \right|}^{2}}} \right)\vec{a}-\left( \frac{\vec{a}.\vec{b}}{{{\left| {\vec{b}} \right|}^{2}}} \right)\vec{a}\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer9)
If ABCDEF is a regular hexagon and\[\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}+\overrightarrow{AE}+\overrightarrow{AF}=k\overrightarrow{AD}\], then find the value of k.
A)
2 done
clear
B)
3 done
clear
C)
4 done
clear
D)
5 done
clear
View Solution play_arrow
-
question_answer10)
In a right angle \[\Delta ABC,\text{ }\angle A=90{}^\circ \] and sides a, b, c are respectively, 5 cm, 4 cm and 3 cm. If a force \[\vec{F}\] has moments 0, 9 and 16 in N cm. units respectively about vertices A, B and C, then magnitude of \[\vec{F}\] is
A)
9 done
clear
B)
4 done
clear
C)
5 done
clear
D)
3 done
clear
View Solution play_arrow
-
question_answer11)
Let \[\alpha ,\beta ,\gamma \] be distinct real numbers. The points with position vectors \[\alpha \hat{i}+\beta \hat{j}+\gamma \hat{k},\beta \hat{i}+\gamma \hat{j}+\alpha \hat{k}\] and \[\gamma \hat{i}+\alpha \hat{j}+\beta \hat{k}\]
A)
Are collinear done
clear
B)
Form an equilateral triangle done
clear
C)
Form a scalene triangle done
clear
D)
Form a right-angled triangle done
clear
View Solution play_arrow
-
question_answer12)
Let \[\vec{a}=\hat{i}-\hat{j},\vec{b}=\hat{j}-\hat{k}\] and \[\vec{c}=\hat{k}-\hat{i}\]. If \[\vec{d}\] is a unit vector such that \[\vec{a}\cdot \vec{d}=0=[\vec{b}\vec{c}\vec{d}]\], then \[\vec{d}\] equals
A)
\[\pm \frac{\hat{i}+\hat{j}-2\hat{k}}{\sqrt{6}}\] done
clear
B)
\[\pm \frac{\hat{i}+\hat{j}-\hat{k}}{\sqrt{3}}\] done
clear
C)
\[\pm \frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}\] done
clear
D)
\[\pm \,\hat{k}\] done
clear
View Solution play_arrow
-
question_answer13)
If \[\overrightarrow{OA}=\vec{a};\overrightarrow{OB}=\vec{b};\overrightarrow{OC}=2\vec{a}+3\vec{b}\,;\] \[\overrightarrow{OD}=\vec{a}-2\vec{b}\], the length of \[\overrightarrow{OA}\] is three times the length of \[\overrightarrow{OB}\] and \[\overrightarrow{OA}\] is perpendicular to \[\overrightarrow{DB}\] then \[\left( \overrightarrow{BD}\times \overrightarrow{AC} \right).\left( \overrightarrow{OD}\times \overrightarrow{OC} \right)\] is
A)
\[7{{\left| \vec{a}\times \vec{b} \right|}^{2}}\] done
clear
B)
\[42|\vec{a}\times \vec{b}{{|}^{2}}\] done
clear
C)
0 done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer14)
If \[\vec{r}\cdot \vec{a}=\vec{r}\cdot b=\vec{r}\cdot \vec{c}=\frac{1}{2}\] for some non-zero vector \[\vec{r}\], then the area of the triangle whose vertices are \[A(\vec{a}),B(\vec{b})\] and \[C\left( {\vec{c}} \right)\] is (\[\vec{a},\text{ }\vec{b},\text{ }\vec{c}\] are non-coplanar)
A)
\[\left| [\vec{a}\,\vec{b}\,\vec{c}] \right|\] done
clear
B)
\[\left| {\vec{r}} \right|\] done
clear
C)
\[\left| [\vec{a}\,\vec{b}\,\vec{c}]\vec{r} \right|\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer15)
If the \[{{p}^{th}},{{q}^{th}}\] and \[{{r}^{th}}\] terms of a G.P. are positive numbers a, b and c respectively, then find the angle between the vectors \[log\,{{a}^{2}}\hat{i}+log\,{{b}^{2}}\hat{j}+log\,{{c}^{2}}\hat{k}\] and \[(q-r)\hat{i}+(r-p)\hat{j}+(p-q)\hat{k}\]
A)
\[\frac{\pi }{6}\] done
clear
B)
\[\frac{\pi }{4}\] done
clear
C)
\[\frac{\pi }{3}\] done
clear
D)
\[\frac{\pi }{2}\] done
clear
View Solution play_arrow
-
question_answer16)
If \[\vec{a}=\hat{i}+\hat{j}+\hat{k},\vec{b}=4\hat{i}+3\hat{j}+4\hat{k}\] and\[\vec{c}=\hat{i}+\alpha \hat{j}+\beta \hat{k}\] are coplanar and \[\left| {\vec{c}} \right|=\sqrt{3}\], then
A)
\[\alpha =\sqrt{2},\beta =1\] done
clear
B)
\[\alpha =1,\beta =\pm 1\] done
clear
C)
\[\alpha =\pm 1,\beta =1\] done
clear
D)
\[\alpha =\pm 1,\beta =-1\] done
clear
View Solution play_arrow
-
question_answer17)
Consider the parallelepiped with side \[\vec{a}=3\hat{i}+2\hat{j}+\hat{k},\text{ }\vec{b}=\hat{i}+\hat{j}+2\hat{k}\] and \[\vec{c}=\hat{i}+3\hat{j}+3\hat{k}\] then the angle between \[\vec{a}\]and the plane containing the face determined by \[\vec{b}\] and \[\vec{c}\] is
A)
\[\sin {{\,}^{-1}}\frac{1}{3}\] done
clear
B)
\[\cos {{\,}^{-1}}\frac{1}{14}\] done
clear
C)
\[sin{{\,}^{-1}}\frac{9}{14}\] done
clear
D)
\[sin{{\,}^{-1}}\frac{2}{3}\] done
clear
View Solution play_arrow
-
question_answer18)
If \[(\vec{a}\times \vec{b})\times \vec{c}=\vec{a}\times (\vec{b}\times \vec{c})\] where \[\vec{a},\vec{b}\] and \[\vec{c}\] are any three vectors such that \[\vec{a}.\vec{b}\ne 0,\vec{b}.\vec{c}\ne 0\] then \[\vec{a}\] and \[\vec{c}\] are
A)
Inclined at an angle of \[\frac{\pi }{3}\] between them done
clear
B)
Inclined at an angle of \[\frac{\pi }{6}\] between them done
clear
C)
Perpendicular done
clear
D)
Parallel done
clear
View Solution play_arrow
-
question_answer19)
What is the area of the parallelogram having diagonals \[3\hat{i}+\hat{j}-2\hat{k}\] and \[\hat{i}-3\hat{j}+4\hat{k}\]?
A)
\[5\sqrt{5}\] square units done
clear
B)
\[4\sqrt{5}\] square units done
clear
C)
\[5\sqrt{3}\] square units done
clear
D)
\[15\sqrt{2}\] square units done
clear
View Solution play_arrow
-
question_answer20)
The vectors \[\vec{a},\vec{b},\vec{c}\] and \[\vec{d}\] are such that \[\vec{a}\times \vec{b}=\vec{c}\times d\] and\[\vec{a}\times \vec{c}=\vec{b}\times \vec{d}\]. Which of the following is/ are correct?
1. \[(\vec{a}-\vec{d})\times (\vec{b}-\vec{c})=\vec{0}\] |
2. \[(\vec{a}\times \overrightarrow{b})\times (\overrightarrow{c}\times \vec{d})=\vec{0}\] |
Select the correct answer using the code given below: |
A)
1 only done
clear
B)
2 only done
clear
C)
Both 1 and 2 done
clear
D)
Neither 1 nor 2 done
clear
View Solution play_arrow
-
question_answer21)
A force \[\vec{F}=3\hat{i}+4\hat{j}-3\hat{k}\] is applied at the point P, whose position vector is \[\overrightarrow{r}=\widehat{2i}-2\hat{j}-3\hat{k}\]. What is the magnitude of the moment of the force about the origin?
A)
23 units done
clear
B)
19 units done
clear
C)
18 units done
clear
D)
21 units done
clear
View Solution play_arrow
-
question_answer22)
What is the interior acute angle of the parallelogram whose sides are represented by the vectors \[\frac{1}{\sqrt{2}}\hat{i}+\frac{1}{\sqrt{2}}\hat{j}+\hat{k}\] and \[\frac{1}{\sqrt{2}}\hat{i}-\frac{1}{\sqrt{2}}\hat{j}+\hat{k}\]?
A)
\[60{}^\circ \] done
clear
B)
\[45{}^\circ \] done
clear
C)
\[30{}^\circ \] done
clear
D)
\[15{}^\circ \] done
clear
View Solution play_arrow
-
question_answer23)
Let \[{{x}^{2}}+3{{y}^{2}}=3\] be the equation of an ellipse in the x-y plane. A and B are two points whose position vectors are \[-\sqrt{3}\hat{i}\] and\[-\sqrt{3}\hat{i}+2\hat{k}\]. Then the position vector of a point P on the ellipse such that \[\angle APB=\pi /4\] is
A)
\[\pm \hat{j}\] done
clear
B)
\[\pm (\hat{i}+\hat{j})\] done
clear
C)
\[\pm \,\hat{i}\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer24)
Let \[\overset{\to }{\mathop{p}}\,,\overset{\to }{\mathop{q}}\,,\overset{\to }{\mathop{r}}\,\] be three mutually perpendicular vectors of the same magnitude. If a vector \[\vec{x}\] satisfies the equation \[\overset{\to }{\mathop{p}}\,\times \{(\overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{q}}\,)\times \overset{\to }{\mathop{p}}\,\}+\overset{\to }{\mathop{q}}\,\times \{(\overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{r}}\,))\times \overset{\to }{\mathop{q}}\,\}\]\[+\overset{\to }{\mathop{r}}\,\times \{(\overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{p}}\,)\times \overset{\to }{\mathop{r}}\,\}=\overset{\to }{\mathop{0}}\,\] then \[\overset{\to }{\mathop{x}}\,\] is given by
A)
\[\frac{1}{2}(\overset{\to }{\mathop{p}}\,+\overset{\to }{\mathop{q}}\,-2\overset{\to }{\mathop{r}}\,)\] done
clear
B)
\[\frac{1}{2}(\overset{\to }{\mathop{p}}\,+\overset{\to }{\mathop{q}}\,+\overset{\to }{\mathop{r}}\,)\] done
clear
C)
\[\frac{1}{3}(\overset{\to }{\mathop{p}}\,+\overset{\to }{\mathop{q}}\,+\overset{\to }{\mathop{r}}\,)\] done
clear
D)
\[\frac{1}{3}(2\overset{\to }{\mathop{p}}\,+\overset{\to }{\mathop{q}}\,-\overset{\to }{\mathop{r}}\,)\] done
clear
View Solution play_arrow
-
question_answer25)
If \[\vec{p}\] and \[\vec{q}\] are non-collinear unit vectors and \[\left| \vec{p}+\vec{q} \right|=\sqrt{3}\], then \[(2\vec{p}-3\vec{q})\cdot (3\vec{p}+\vec{q})\] is equal to
A)
0 done
clear
B)
\[\frac{1}{3}\] done
clear
C)
\[-\frac{1}{3}\] done
clear
D)
\[-\frac{1}{2}\] done
clear
View Solution play_arrow
-
question_answer26)
ABCDEF is a regular hexagon where centre O is the origin. If the position vectors of A and B are \[\hat{i}-\hat{j}+2\hat{k}\] and \[2\hat{i}+\hat{j}-\hat{k}\] respectively then \[\overrightarrow{BC}\] is equal to
A)
\[\hat{i}+\hat{j}-2\hat{k}\] done
clear
B)
\[-\hat{i}+\hat{j}-2\hat{k}\] done
clear
C)
\[3\hat{i}+3\hat{j}-4\hat{k}\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer27)
If \[\overset{\to }{\mathop{a}}\,,\,\overset{\to }{\mathop{b}}\,,\,\overset{\to }{\mathop{c}}\,\] are three non-coplanar vectors, then the value of \[\frac{\overset{\to }{\mathop{a}}\,.(\overset{\to }{\mathop{b}}\,\times \overset{\to }{\mathop{c}}\,)}{(\overset{\to }{\mathop{c}}\,\times \overset{\to }{\mathop{a}}\,).\overset{\to }{\mathop{b}}\,}+\frac{\overset{\to }{\mathop{b}}\,.(\overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{c}}\,)}{\overset{\to }{\mathop{c}}\,.(\overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\,)}\] is:
A)
0 done
clear
B)
2 done
clear
C)
1 done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer28)
For any vector \[\overset{\to }{\mathop{p}}\,\], the value of\[\frac{3}{2}\left\{ |\overset{\to }{\mathop{p}}\,\times \hat{i}{{|}^{2}}+|\overset{\to }{\mathop{p}}\,\times \hat{j}{{|}^{2}}+|\overset{\to }{\mathop{p}}\,\times \hat{k}{{|}^{2}} \right\}\] is
A)
\[\overset{\to 2}{\mathop{p}}\,\] done
clear
B)
\[2\overset{\to 2}{\mathop{p}}\,\] done
clear
C)
\[3\overset{\to 2}{\mathop{p}}\,\] done
clear
D)
\[4\overset{\to 2}{\mathop{p}}\,\] done
clear
View Solution play_arrow
-
question_answer29)
\[\hat{i}\times (\vec{A}\times \hat{i})+\hat{j}\times (\vec{A}\times \hat{j})+\hat{k}\times (\vec{A}\times \hat{k})\] is equal to
A)
\[\overset{\to }{\mathop{A}}\,\] done
clear
B)
\[2\overset{\to }{\mathop{A}}\,\] done
clear
C)
\[3\overset{\to }{\mathop{A}}\,\] done
clear
D)
0 done
clear
View Solution play_arrow
-
question_answer30)
The vectors \[\overrightarrow{AB}=3\hat{i}+5\hat{j}+4\hat{k}\] and \[\overrightarrow{AC}=5\hat{i}-5\hat{j}+2\hat{k}\] are the sides of a triangle ABC. The length of the median through A is:
A)
\[\sqrt{13}\]units done
clear
B)
\[2\sqrt{5}\] units done
clear
C)
5 units done
clear
D)
10 units done
clear
View Solution play_arrow
-
question_answer31)
A force \[F=2i+j-k\] acts at a point A, whose position vector is \[2i-j\]. The moment of F about the origin is
A)
\[i+2j-4k\] done
clear
B)
\[i-2j-4k\] done
clear
C)
\[i+2j+4k\] done
clear
D)
\[i-2j+4k\] done
clear
View Solution play_arrow
-
question_answer32)
If \[\vec{a},\text{ }\vec{b}\] and \[\vec{c}\] are the position vectors of the vertices of an equilateral triangle whose orthocentre is at the origin, then which one of the following is correct?
A)
\[\vec{a}+\vec{b}+\vec{c}=\vec{0}\] done
clear
B)
\[\vec{a}+\vec{b}+\vec{c}=\,\,unit\,\,vector\] done
clear
C)
\[\vec{a}+\vec{b}=\vec{c}\] done
clear
D)
\[\vec{a}=\vec{b}+\vec{c}\] done
clear
View Solution play_arrow
-
question_answer33)
Which one of the following is the unit vector perpendicular to both \[\vec{a}=-\hat{i}+\hat{j}+\hat{k}\] and\[\vec{b}=\hat{i}-\hat{j}+\hat{k}\]?
A)
\[\frac{\hat{i}+\hat{j}}{\sqrt{2}}\] done
clear
B)
\[\hat{k}\] done
clear
C)
\[\frac{\hat{j}+\hat{k}}{\sqrt{2}}\] done
clear
D)
\[\frac{\hat{i}-\hat{j}}{\sqrt{2}}\] done
clear
View Solution play_arrow
-
question_answer34)
If \[\vec{a}=2\hat{i}+2\hat{j}+3\hat{k},\vec{b}=-\hat{i}+2\hat{j}+\hat{k}\] and \[\overrightarrow{c}=3\hat{i}+\hat{j}\]are three vectors such that \[\vec{a}+t\vec{b}\] is perpendicular to \[\vec{c}\], then what is t equal to?
A)
8 done
clear
B)
6 done
clear
C)
4 done
clear
D)
2 done
clear
View Solution play_arrow
-
question_answer35)
\[\overset{\to }{\mathop{a}}\,\text{ },\overset{\to }{\mathop{b}}\,\,\,and\,\,\vec{c}\] are three vectors with magnitude \[|\overset{\to }{\mathop{a}}\,|=4,|\overset{\to }{\mathop{b}}\,|=4,|\overset{\to }{\mathop{c}}\,|=2\] and such that \[\overset{\to }{\mathop{a}}\,\] is perpendicular to is perpendicular to \[(\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\,),\overset{\to }{\mathop{b}}\,\] is perpendicular to \[(\overset{\to }{\mathop{c}}\,+\overset{\to }{\mathop{a}}\,)\] and \[\overset{\to }{\mathop{c}}\,\] is perpendicular to \[(\overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,)\]. It follows that \[|\overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\,|\] is equal to:
A)
9 done
clear
B)
6 done
clear
C)
5 done
clear
D)
4 done
clear
View Solution play_arrow
-
question_answer36)
A vector \[\overset{\to }{\mathop{a}}\,=(x,y,z)\] of length \[2\sqrt{3}\] which makes equal angles with the vectors \[\overset{\to }{\mathop{b}}\,=(y,\,\,-2z,\,\,3x)\] and \[\overset{\to }{\mathop{c}}\,=(2z,\,\,3x,\,\,-y)\] is perpendicular to \[\overset{\to }{\mathop{d}}\,=(1,-1,2)\] and makes an obtuse angle with y-axis is
A)
(- 2, 2, 2) done
clear
B)
\[(1,\,\,1,\,\,\sqrt{10})\] done
clear
C)
(2, - 2, - 2) done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer37)
Force \[\hat{i}+2\hat{j}-3\hat{k},2\hat{i}+3\hat{j}+4\hat{k}\] and \[-\hat{i}-\hat{j}+\hat{k}\] are acting at the point P (0, 1, 2). The moment of these forces about the point A (1, - 2, 0) is
A)
\[2\hat{i}-6\hat{j}+10\hat{k}\] done
clear
B)
\[-2\hat{i}+6\hat{j}-10\hat{k}\] done
clear
C)
\[2\hat{i}+6\hat{j}-10\hat{k}\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer38)
If vector \[a=2i-3j+6k\] and vector \[b=-2i+2j-k\],\[\text{then}\,\,\,\frac{\text{Projection}\,\,\text{of}\,\,\text{vector}\,\,\text{a}\,\,\text{on}\,\,\text{vector}\,\,\text{b}}{\text{Projection}\,\,\text{of}\,\,\text{vector}\,\,\text{b}\,\,\text{on}\,\,\text{vector}\,\,\text{a}}\text{=}\]
A)
\[\frac{3}{7}\] done
clear
B)
\[\frac{7}{3}\] done
clear
C)
3 done
clear
D)
7 done
clear
View Solution play_arrow
-
question_answer39)
A vector of magnitude 3, bisecting the angle between the vectors \[\overset{\to }{\mathop{a}}\,=2\hat{i}+\hat{j}-\hat{k}\] and \[\overset{\to }{\mathop{b}}\,=\hat{i}-2\hat{j}+\hat{k}\] and making an obtuse angle with \[\overset{\to }{\mathop{b}}\,\] is
A)
\[\frac{3\hat{i}-\hat{j}}{\sqrt{6}}\] done
clear
B)
\[\frac{\hat{i}+3\hat{j}-2\hat{k}}{\sqrt{14}}\] done
clear
C)
\[\frac{3(\hat{i}+3\hat{j}-2\hat{k})}{\sqrt{14}}\] done
clear
D)
\[\frac{3\hat{i}-\hat{j}}{\sqrt{10}}\] done
clear
View Solution play_arrow
-
question_answer40)
Let \[\overset{\to }{\mathop{a}}\,,\text{ }\overset{\to }{\mathop{b}}\,\] and \[\overset{\to }{\mathop{c}}\,\] be three non-coplanar vectors, and let \[\overset{\to }{\mathop{p}}\,,\text{ }\overset{\to }{\mathop{q}}\,\] and \[\overset{\to }{\mathop{r}}\,\] be the vectors defined by the relations \[\overset{\to }{\mathop{p}}\,=\frac{\overset{\to }{\mathop{b}}\,\times \overset{\to }{\mathop{c}}\,}{[\overset{\to }{\mathop{a}}\,\,\overset{\to }{\mathop{b}}\,\,\overset{\to }{\mathop{c}}\,]},\overset{\to }{\mathop{q}}\,=\frac{\overset{\to }{\mathop{c}}\,\times \overset{\to }{\mathop{a}}\,}{[\overset{\to }{\mathop{a}}\,\,\overset{\to }{\mathop{b}}\,\,\overset{\to }{\mathop{c}}\,]}\] and \[\overset{\to }{\mathop{r}}\,=\frac{\overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\,}{[\overset{\to }{\mathop{a}}\,\,\overset{\to }{\mathop{b}}\,\,\overset{\to }{\mathop{c}}\,]}.\] Then the value of the expression \[(\overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,).\overset{\to }{\mathop{p}}\,+(\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\,).\overset{\to }{\mathop{q}}\,+(\overset{\to }{\mathop{c}}\,+\overset{\to }{\mathop{a}}\,).\overset{\to }{\mathop{r}}\,\] is equal to
A)
0 done
clear
B)
1 done
clear
C)
2 done
clear
D)
3 done
clear
View Solution play_arrow
-
question_answer41)
If \[\vec{u},\vec{v},\vec{w}\] are non-coplanar vectors and p, q are real numbers, then the equality \[[3\vec{u}\,\,p\vec{v}\,\,p\vec{w}]-[p\vec{v}\,\vec{\omega }\,q\vec{u}]-[2\vec{\omega }\,q\vec{v}\,q\vec{u}]=0\] holds for:
A)
Exactly two values of (p, q) done
clear
B)
More than two but not all values of (p, q) done
clear
C)
All values of (p, q) done
clear
D)
Exactly one value of (p, q) done
clear
View Solution play_arrow
-
question_answer42)
The vector \[\overset{\to }{\mathop{c}}\,\] directed along the bisectors of the angle between the vectors \[\overset{\to }{\mathop{a}}\,=7\hat{i}-4\hat{j}-4\hat{k},\] \[\overset{\to }{\mathop{b}}\,=-2\hat{i}-\hat{j}+2\hat{k},\] and \[|\overset{\to }{\mathop{c}}\,|=3\sqrt{6}\] is given by
A)
\[\hat{i}-7\hat{j}+2\hat{k}\] done
clear
B)
\[\hat{i}+7\hat{j}-2\hat{k}\] done
clear
C)
\[\hat{i}+7\hat{j}+2\hat{k}\] done
clear
D)
\[\hat{i}+7\hat{j}+3\hat{k}\] done
clear
View Solution play_arrow
-
question_answer43)
Let \[\vec{r}=(\vec{a}\times \vec{b})\sin \,x+(\vec{b}\times \vec{c})\cos \,y+2(\vec{c}\times \vec{a})\] where \[\vec{a},\vec{b},\vec{c}\]three non-coplanar vectors are. If \[\vec{r}\] is perpendicular to \[\vec{a}+\vec{b}+\vec{c},\] the minimum value of \[{{x}^{2}}+{{y}^{2}}\] is
A)
\[{{\pi }^{2}}\] done
clear
B)
\[\frac{{{\pi }^{2}}}{4}\] done
clear
C)
\[\frac{5{{\pi }^{2}}}{4}\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer44)
Let \[\vec{a},\vec{b}\] and \[\vec{c}\] be three non-zero vectors such that no two of these are collinear. If the vector \[\vec{a}+2\vec{b}\] is collinear with \[\vec{c}\] and \[\vec{b}+3\vec{c}\] is collinear with \[\vec{a}\] (\[\lambda \] being some non-zero scalar) then \[\vec{a}+2\vec{b}+6\vec{c}\] equals
A)
0 done
clear
B)
\[\lambda \vec{b}\] done
clear
C)
\[\lambda \vec{c}\] done
clear
D)
\[\lambda \vec{a}\] done
clear
View Solution play_arrow
-
question_answer45)
The value of 'x' for which the angle between the vectors \[\overset{\to }{\mathop{a}}\,=2{{x}^{2}}\hat{i}+4x\hat{j}+\hat{k}\] and \[\overset{\to }{\mathop{b}}\,=7\hat{i}-2\hat{j}+x\hat{k}\] is obtuse are
A)
\[\operatorname{x} < 0\] done
clear
B)
\[x>\frac{1}{2}\] done
clear
C)
\[0<x<\frac{1}{2}\] done
clear
D)
\[x\in R\] done
clear
View Solution play_arrow
-
question_answer46)
If \[\vec{a},\text{ }\vec{b},\text{ }\vec{c},\text{ }\vec{d}\] are the position vectors of points A, B, C and D respectively such that \[(\vec{a}-\vec{d}).(\vec{b}-\vec{c})=(\vec{b}-\vec{d}).(\vec{c}-\vec{a})=0\] then D is the
A)
Centroid of \[\Delta \text{ }ABC\] done
clear
B)
Circumcentre of \[\Delta \,ABC\] done
clear
C)
Orthocentre of \[\Delta \,ABC\] done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer47)
Let \[\overset{\to }{\mathop{a}}\,,\overset{\to }{\mathop{b}}\,,\overset{\to }{\mathop{c}}\,\] be non-coplanar vectors and\[\overset{\to }{\mathop{p}}\,=\frac{\overset{\to }{\mathop{b}}\,\times \overset{\to }{\mathop{c}}\,}{[\overset{\to }{\mathop{a}}\,\overset{\to }{\mathop{b}}\,\overset{\to }{\mathop{c}}\,]},\,\,\,\overset{\to }{\mathop{q}}\,=\frac{\overset{\to }{\mathop{c}}\,\times \overset{\to }{\mathop{a}}\,}{[\overset{\to }{\mathop{a}}\,\overset{\to }{\mathop{b}}\,\overset{\to }{\mathop{c}}\,]},\,\,\,\overset{\to }{\mathop{r}}\,=\frac{\overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\,}{[\overset{\to }{\mathop{a}}\,\overset{\to }{\mathop{b}}\,\overset{\to }{\mathop{c}}\,]}.\] What is the value of\[(\vec{a}-\vec{b}-\vec{c}).\vec{p}+(\vec{b}-\vec{c}-\vec{a}).\vec{q}+(\vec{c}-\vec{a}-\vec{b}).\vec{r}\]?
A)
0 done
clear
B)
-3 done
clear
C)
3 done
clear
D)
-9 done
clear
View Solution play_arrow
-
question_answer48)
Let \[{{\vec{r}}_{1}},{{\vec{r}}_{2}},{{\vec{r}}_{3}},.....{{\vec{r}}_{n}},\] be the position vectors of points \[{{P}_{1}},{{P}_{2}},{{P}_{3}},....,{{P}_{n}}\] relative to the origin O. If the vector equation \[{{a}_{1}}{{\vec{r}}_{1}}+{{a}_{2}}{{\vec{r}}_{2}}+....+{{a}_{n}}{{\vec{r}}_{n}}=0\] holds, then a similar equation will also hold w.r.t. to any other origin provided
A)
\[{{a}_{1}}+{{a}_{2}}+....+{{a}_{n}}=n\] done
clear
B)
\[{{a}_{1}}+{{a}_{2}}+....+{{a}_{n}}=1\] done
clear
C)
\[{{a}_{1}}+{{a}_{2}}+....+{{a}_{n}}=0\] done
clear
D)
\[{{a}_{1}}={{a}_{2}}={{a}_{3}}=....={{a}_{n}}=0\] done
clear
View Solution play_arrow
-
question_answer49)
If the middle points of sides BC, CA & AB of triangle ABC are respectively D, E, F then position vector of centre of triangle DEF, when position vector of A, B, C are respectively \[\hat{i}+\hat{j},\hat{j}+\hat{k},\hat{k}+\hat{i}\]is
A)
\[\frac{1}{3}(\hat{i}+\hat{j}+\hat{k})\] done
clear
B)
\[(\hat{i}+\hat{j}+\hat{k})\] done
clear
C)
\[2(\hat{i}+\hat{j}+\hat{k})\] done
clear
D)
\[\frac{2}{3}(\hat{i}+\hat{j}+\hat{k})\] done
clear
View Solution play_arrow
-
question_answer50)
If \[\overrightarrow{OA}=\overrightarrow{a};\,\overrightarrow{OB}=\overrightarrow{b};\,\overrightarrow{OC}=2\overrightarrow{a}+3\overrightarrow{b};\] \[\overrightarrow{OD}=\overset{\to }{\mathop{a}}\,-2\text{ }\overset{\to }{\mathop{b}}\,,\]the length of \[\overrightarrow{OA}\] is three times the length of \[\overrightarrow{OB}\] and \[\overrightarrow{OA}\] is perpendicular to \[\overrightarrow{DB}\] then \[(\overrightarrow{BD}\times \overrightarrow{AC}).(\overrightarrow{OD}\times \overrightarrow{OC})\] is
A)
\[7|\overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\,{{|}^{2}}\] done
clear
B)
\[42|\overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\,{{|}^{2}}\] done
clear
C)
0 done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer51)
Let \[\overrightarrow{A}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k},\text{ }\overrightarrow{B}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}\] and \[\overrightarrow{C}={{c}_{1}}\hat{i}+{{c}_{2}}\hat{j}+{{c}_{3}}\hat{k}\] be three non-zero vectors such that \[\overrightarrow{C}\] is a unit vector perpendicular to both the vectors \[\overrightarrow{A}\] and \[\overrightarrow{B}\] .If the angle between \[\overrightarrow{A}\] and \[\overrightarrow{B}\] is \[\frac{\pi }{6}\], then.
A)
0 done
clear
B)
1 done
clear
C)
\[\frac{1}{4}(a_{1}^{2}+a_{2}^{2}+a_{3}^{2})(b_{1}^{2}+b_{3}^{2})\] done
clear
D)
\[\frac{3}{4}(a_{1}^{2}+a_{2}^{2}+a_{3}^{2})(b_{1}^{2}+b_{2}^{2}+b_{3}^{2})(c_{1}^{2}+c_{3}^{2})\] done
clear
View Solution play_arrow
-
question_answer52)
If a, b, c are the \[{{p}^{th}},\text{ }{{q}^{th}}.\text{ }{{\text{r}}^{th}}\] terms of an HP and \[\vec{u}=(q-r)\vec{i}+(r-p)\vec{j}+(p-q)\vec{k},\vec{v}=\frac{{\vec{i}}}{a}+\frac{{\vec{j}}}{b}+\frac{{\vec{k}}}{c}\] then
A)
\[\vec{u},\vec{v}\] are parallel vectors done
clear
B)
\[\vec{u},\vec{v}\] are orthogonal vectors done
clear
C)
\[\vec{u}.\vec{v}=1\] done
clear
D)
\[\vec{u}\times \vec{v}=\vec{i}+\vec{j}+\vec{k}\] done
clear
View Solution play_arrow
-
question_answer53)
Given that the vectors \[\overline{\alpha }\] and \[\overset{\to }{\mathop{\beta }}\,\] are non-collinear. The values of x and y for which \[\overset{\to }{\mathop{u}}\,-\overset{\to }{\mathop{v}}\,=\overset{\to }{\mathop{w}}\,\] holds true if \[\overset{\to }{\mathop{u}}\,=2x\overset{\to }{\mathop{\alpha }}\,+y\overset{\to }{\mathop{\beta }}\,,\overset{\to }{\mathop{v}}\,=2\,y\overset{\to }{\mathop{\alpha }}\,+3x\overset{\to }{\mathop{\beta }}\,\] and \[\overset{\to }{\mathop{w}}\,=2\overset{\to }{\mathop{\alpha }}\,-5\overset{\to }{\mathop{\beta }}\,\]are
A)
\[x=2,y=1\] done
clear
B)
\[x=1,y=2\] done
clear
C)
\[x=-2,y=1\] done
clear
D)
\[x=-2,y=-1\] done
clear
View Solution play_arrow
-
question_answer54)
The vectors \[\hat{i}-2x\hat{j}-3y\hat{k}\] and \[\hat{i}+3x\hat{j}+2y\hat{k}\] are orthogonal to each other. Then the locus of the point (x, y) is
A)
Hyperbola done
clear
B)
Ellipse done
clear
C)
Parabola done
clear
D)
Circle done
clear
View Solution play_arrow
-
question_answer55)
If \[\overset{\to }{\mathop{a}}\,=2\hat{i}-2\hat{j}+\hat{k}\] and \[\overset{\to }{\mathop{c}}\,=-\hat{i}+2\hat{k}\] then \[|\overset{\to }{\mathop{c}}\,|.\overset{\to }{\mathop{a}}\,\] is equal to:
A)
\[2\sqrt{5}\hat{i}+2\sqrt{5}\hat{j}+\sqrt{5}\hat{k}\] done
clear
B)
\[2\sqrt{5}\hat{i}-2\sqrt{5}\hat{j}+\sqrt{5}\hat{k}\] done
clear
C)
\[\sqrt{5}\hat{i}+\sqrt{5}\hat{j}+\sqrt{5}\hat{k}\] done
clear
D)
\[\sqrt{5}\hat{i}+2\sqrt{5}\hat{j}+\sqrt{5}\hat{k}\] done
clear
View Solution play_arrow
-
question_answer56)
The upper \[\frac{3}{4}\]th portion of a vertical pole subtends an angle \[{{\tan }^{-1}}\frac{3}{5}\] at a point in the horizontal plane through its foot and at a distance 40 m from the foot. A possible height of the vertical pole is
A)
80 m done
clear
B)
20 m done
clear
C)
40 m done
clear
D)
60 m done
clear
View Solution play_arrow
-
question_answer57)
If \[{{a}^{2}}+{{b}^{2}}+{{c}^{2}}=1\] where \[a,\text{ }b,\text{ }c\text{ }\in \,\,R\text{ }\], then the maximum value of\[{{(4a-3b)}^{2}}+{{(5b-4c)}^{2}}+{{(3c-5a)}^{2}}\] is
A)
25 done
clear
B)
50 done
clear
C)
144 done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer58)
If \[\vec{a}.\,\vec{b}=0\] and \[\vec{a}+\vec{b}\] makes an angle of \[60{}^\circ \] with \[\vec{a}\], then
A)
\[|\vec{a}|=2|\vec{b}|\] done
clear
B)
\[2|\vec{a}|=|\vec{b}|\] done
clear
C)
\[|\vec{a}|=\sqrt{3}|\vec{b}|\] done
clear
D)
\[|\vec{b}|=\sqrt{3}|\vec{a}|\] done
clear
View Solution play_arrow
-
question_answer59)
If \[\overset{\to }{\mathop{a}}\,,\text{ }\overset{\to }{\mathop{b}}\,,\text{ }\overset{\to }{\mathop{c}}\,\] are the position vectors of corners A, B, C of a parallelogram ABCD, then what is the position vector of the corner D?
A)
\[\overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\,\] done
clear
B)
\[\overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,-\overset{\to }{\mathop{c}}\,\] done
clear
C)
\[\overset{\to }{\mathop{a}}\,-\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\,\] done
clear
D)
\[-\overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,+\overset{\to }{\mathop{c}}\,\] done
clear
View Solution play_arrow
-
question_answer60)
For any vector\[\vec{\alpha }\], what is\[\left( \overset{\to }{\mathop{\alpha }}\,.\widehat{i} \right)\widehat{i}+\left( \overset{\to }{\mathop{\alpha }}\,.\widehat{j} \right)\widehat{j}+\left( \overset{\to }{\mathop{a}}\,.\widehat{k} \right)\widehat{k}\] equal to?
A)
\[\overset{\to }{\mathop{\alpha }}\,\] done
clear
B)
\[3\overset{\to }{\mathop{\alpha }}\,\] done
clear
C)
\[-\overset{\to }{\mathop{\alpha }}\,\] done
clear
D)
\[\overset{\to }{\mathop{0}}\,\] done
clear
View Solution play_arrow
-
question_answer61)
If \[\vec{a}=\vec{i}+2\hat{j}-3\hat{k}\] and \[\vec{b}=3\hat{i}-\hat{j}+\lambda \hat{k},\] and \[(\vec{a}+\vec{b})\] is perpendicular to \[\vec{a}-\vec{b}\], then what is the value of \[\lambda \]?
A)
-2 only done
clear
B)
\[\pm 2\] done
clear
C)
3 only done
clear
D)
\[\pm 3\] done
clear
View Solution play_arrow
-
question_answer62)
If \[\overrightarrow{p}=\lambda (\overrightarrow{u}\times \overrightarrow{v})+\mu (\overrightarrow{v}\times \overrightarrow{w})+v(\overrightarrow{w}\times \overrightarrow{u})\] and \[[\overset{\to }{\mathop{u}}\,\,\overset{\to }{\mathop{v}}\,\,\overset{\to }{\mathop{w}}\,]=\frac{1}{5}\], then \[\lambda +\mu +v\] is equal to
A)
5 done
clear
B)
10 done
clear
C)
15 done
clear
D)
None of these done
clear
View Solution play_arrow
-
question_answer63)
The angles of a triangle, two of whose sides are represented by the vectors \[\sqrt{3}(\vec{a}\times \vec{b})\] and \[\vec{b}-(\vec{a}.\vec{b})\vec{a}\] where \[\vec{b}\] is a non-zero vector and \[\vec{a}\]is a unit vector are
A)
\[\tan {{\,}^{-1}}\left( \frac{1}{\sqrt{3}} \right);\,\tan {{\,}^{-1}}\left( \frac{1}{2} \right);\,\tan {{\,}^{-1}}\left( \frac{\sqrt{3}+2}{1-2\sqrt{3}} \right)\] done
clear
B)
\[\tan {{\,}^{-1}}\left( \sqrt{3} \right);\,\tan {{\,}^{-1}}\left( \frac{1}{\sqrt{3}} \right);\,\cot {{\,}^{-1}}\left( 0 \right)\] done
clear
C)
\[\tan {{\,}^{-1}}\left( \sqrt{3} \right);\,\tan {{\,}^{-1}}\left( 2 \right);\,\tan {{\,}^{-1}}\left( \frac{\sqrt{3}+2}{2\sqrt{3}-1} \right)\] done
clear
D)
\[\tan {{\,}^{-1}}\left( \sqrt{3} \right);\,\tan {{\,}^{-1}}\left( \sqrt{2} \right);\,\tan {{\,}^{-1}}\left( \frac{\sqrt{2}+3}{3\sqrt{2}-1} \right)\] done
clear
View Solution play_arrow
-
question_answer64)
The vectors \[(2\hat{i}-m\hat{j}+3m\hat{k})\And \]\[\{(1+m)\hat{i}-3m\hat{j}+\hat{k}\}\] include an acute angle for
A)
All values of m done
clear
B)
\[m<-2\]or \[m>-1/2\] done
clear
C)
\[m=-1/2\] done
clear
D)
\[m\in \left[ -2,-\frac{1}{2} \right]\] done
clear
View Solution play_arrow
-
question_answer65)
If \[\vec{a}\] is a position vector of a point (1, -3) and A is another point (-1, 5), then what are the coordinates of the point B such that\[\overrightarrow{AB}=\vec{a}\]?
A)
(2, 0) done
clear
B)
(0, 2) done
clear
C)
(-2, 0) done
clear
D)
(0, -2) done
clear
View Solution play_arrow
-
question_answer66)
If \[\overset{\to }{\mathop{{{r}_{1}}}}\,,\overset{\to }{\mathop{{{r}_{2}}}}\,,\overset{\to }{\mathop{{{r}_{3}}}}\,\] are the position vectors of three collinear points and scalars m and n exist such that\[\overset{\to }{\mathop{{{r}_{3}}}}\,=m\overset{\to }{\mathop{{{r}_{1}}}}\,+n\overset{\to }{\mathop{{{r}_{2}}}}\,\], then what is the value of (m+n)?
A)
0 done
clear
B)
1 done
clear
C)
-1 done
clear
D)
2 done
clear
View Solution play_arrow
-
question_answer67)
If \[\overset{\to }{\mathop{c}}\,\] is the unit vector perpendicular to both the vectors \[\overset{\to }{\mathop{a}}\,\] and \[\overset{\to }{\mathop{b}}\,\], then what is another unit vector perpendicular to both the vectors \[\overset{\to }{\mathop{a}}\,\] and \[\overset{\to }{\mathop{b}}\,?\]
A)
\[\overset{\to }{\mathop{c}}\,\times \overset{\to }{\mathop{a}}\,\] done
clear
B)
\[\overset{\to }{\mathop{c}}\,\times \overset{\to }{\mathop{b}}\,\] done
clear
C)
\[-\frac{\left( \overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\, \right)}{\left| \overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\, \right|}\] done
clear
D)
\[\frac{\left( \overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\, \right)}{\left| \overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\, \right|}\] done
clear
View Solution play_arrow
-
question_answer68)
What is the vector equally inclined to the vectors\[\hat{i}+3\hat{j}\] and\[3\hat{i}+\hat{j}\]?
A)
\[\hat{i}+\hat{j}\] done
clear
B)
\[2\hat{i}-\hat{j}\] done
clear
C)
\[2\hat{i}+\hat{j}\] done
clear
D)
None of theses done
clear
View Solution play_arrow
-
question_answer69)
If \[\overset{\to }{\mathop{p}}\,\] and \[\overset{\to }{\mathop{q}}\,\] are two unit vectors inclined at an angle \[\alpha \] to each other than \[|\overset{\to }{\mathop{p}}\,+\overset{\to }{\mathop{q}}\,|<1\] if
A)
\[\frac{2\pi }{3}<\alpha <\frac{4\pi }{3}\] done
clear
B)
\[\frac{4\pi }{3}<\alpha <2\pi \] done
clear
C)
\[0<\alpha <\frac{\pi }{3}\] done
clear
D)
\[\alpha =\frac{\pi }{2}\] done
clear
View Solution play_arrow
-
question_answer70)
If \[{{\vec{r}}_{1}}=\lambda \hat{i}+2\hat{j}+\hat{k},\,{{\vec{r}}_{2}}=\hat{i}+(2-\lambda )\hat{j}+2\hat{k}\] are such that \[\left| {{{\vec{r}}}_{1}} \right|>\left| {{{\vec{r}}}_{2}} \right|\], then \[\lambda \] satisfies which one of the following?
A)
\[\lambda =0\] only done
clear
B)
\[\lambda =1\] done
clear
C)
\[\lambda <1\] done
clear
D)
\[\lambda >1\] done
clear
View Solution play_arrow