Solved papers for JEE Main & Advanced AIEEE Solved Paper-2007

done AIEEE Solved Paper-2007 Total Questions - 120

• question_answer1) The displacement of an object attached to a spring and executing simple harmonic motion is given by$2x+3y+z=1$$x+3y+2z=2$ metre. The time at which the maximum speed first occurs is       AIEEE  Solved  Paper-2007

A)
0.5 s

B)
0.75 s

C)
0.125s

D)
0.25s

• question_answer2) In an AC circuit, the voltage applied is$cos\text{ }\alpha$ $1/\sqrt{3}$The resulting current in the circuit is$1/\sqrt{2}$. The power consumption in the circuit is given by       AIEEE  Solved  Paper-2007

A)
$P=\frac{{{E}_{0}}{{l}_{0}}}{\sqrt{2}}$

B)
P = zero

C)
$P=\frac{{{E}_{0}}{{l}_{0}}}{2}$

D)
$P=\sqrt{2}\,{{E}_{0}}{{l}_{0}}$

• question_answer3) An electric charge${{y}^{2}}={{x}^{2}}-2xy\frac{dy}{dx}$is placed at the origin (0, 0) of X-Y coordinate system. Two points A and B are situated at${{p}^{2}}+{{q}^{2}}=1,$and (2, 0) respectively. The potential difference between the points A and B will be       AIEEE  Solved  Paper-2007

A)
9V

B)
zero

C)
2V

D)
4.5V

• question_answer4) A battery is used to charge a parallel plate capacitor till the potential difference between the plates becomes equal to the electromotive force of the battery. The ratio of the energy stored in the capacitor and the work done by the battery, will be       AIEEE  Solved  Paper-2007

A)
1

B)
2

C)
$(p+q)$

D)
$\frac{1}{2}$

• question_answer5) An ideal coil of 10 H is connected in series with a resistance of $\frac{1}{\sqrt{2}}$ and a battery of 5 V. After 2 s, the connection is made, the current flowing (in ampere) in the circuit is       AIEEE  Solved  Paper-2007

A)
$\sqrt{2}$

B)
e

C)
${{e}^{-1}}$

D)
$30{}^\circ$

• question_answer6) A long straight wire of radius a carries a steady current i. The current is uniformly distributed across its cross-section. The ratio of the magnetic field at$2a/\sqrt{3}$and$2a\sqrt{3}$is       AIEEE  Solved  Paper-2007

A)
$a/\sqrt{3}$

B)
4

C)
1

D)
$a\sqrt{3}$

• question_answer7) A current$^{20}{{C}_{0}}{{-}^{20}}{{C}_{1}}{{+}^{20}}{{C}_{2}}{{-}^{20}}{{C}_{3}}+....{{+}^{20}}{{C}_{10}}$flows along the length of an infinitely long, straight, thin walled pipe. Then,       AIEEE  Solved  Paper-2007

A)
The magnetic field is zero only on the axis of the pipe

B)
The magnetic field is different at different points inside the pipe

C)
The magnetic field at any point inside the pipe is zero

D)
The magnetic field at all points inside the pipe is the same, but not zero

• question_answer8) If${{-}^{20}}{{C}_{10}}$is the mass of an oxygen isotope$\frac{1}{2}{{\,}^{20}}{{C}_{10}}$and$^{20}{{C}_{10}}$are the masses of a proton and a neutron respectively, the nuclear binding energy of the isotope is       AIEEE  Solved  Paper-2007

A)
$P(x,\text{ }y)$

B)
$|~z+4|\le 3,$

C)
$|~z+1|$

D)
$D=\left| \begin{matrix} 1 & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+y \\ \end{matrix} \right|$

• question_answer9) In gamma ray emission from a nucleus       AIEEE  Solved  Paper-2007

A)
Both the neutron number and the proton number change

B)
There is no change in the proton number and the neutron number

C)
Only the neutron number changes

D)
Only the proton number changes

• question_answer10) If in a$x\ne 0$junction diode, a square input signal of 10 V is applied as shown Then, the output signal across ${{R}_{L}}$ will be     AIEEE  Solved  Paper-2007

A) B) C) D) • question_answer11) Photon of frequency v has a momentum associated with it. If c is the velocity of light, the momentum is       AIEEE  Solved  Paper-2007

A)
v/c

B)
$y\ne 0$

C)
$x$

D)
$x$

• question_answer12) The velocity of a particle is$x$If its position is$x$at$\frac{{{x}^{2}}}{{{\cos }^{2}}\alpha }-\frac{{{y}^{2}}}{{{\sin }^{2}}\alpha }=1,$then its displacement after unit time$\frac{\pi }{4}$is       AIEEE  Solved  Paper-2007

A)
${{v}_{0}}+2g+3f$

B)
${{v}_{0}}+g/2+f/3$

C)
${{v}_{0}}+g+f$

D)
${{v}_{0}}+g/2+f$

• question_answer13) For the given uniform square lamina ABCD, whose centre is O AIEEE  Solved  Paper-2007

A)
$\sqrt{2}\,{{l}_{AC}}={{l}_{EF}}$

B)
${{l}_{AD}}=4{{l}_{EF}}$

C)
${{l}_{AC}}={{l}_{EF}}$

D)
${{l}_{AC}}=\sqrt{2}\,{{l}_{EF}}$

• question_answer14) A point mass oscillates along the x-axis according to the law${{\log }_{3}}e$.If the acceleration of the particle is written as ${{\log }_{e}}3$then       AIEEE  Solved  Paper-2007

A)
$f(x)={{\tan }^{-1}}(\sin x+\cos x)$

B)
$(\pi /4,\pi /2)$

C)
$(-\pi /2,\pi /4)$

D)
$(0,\pi /2)$

• question_answer15) Charges are placed on the vertices of a square as shown. Let $\vec{E}$ be the electric field and V be the potential at the centre. If the charges on A and B are interchanged with those on D and C respectively, then AIEEE  Solved  Paper-2007

A)
E remains unchanged, V changes

B)
both E and V change

C)
E and V remain unchanged

D)
E changes, V remains unchanged

• question_answer16) The half-life period of a radioactive element X is same as the mean life time of another radioactive element Y. Initially, they have the same number of atoms. Then,       AIEEE  Solved  Paper-2007

A)
X will decay faster than Y

B)
Y will decay faster than X

C)
Y and X have same decay rate initially

D)
X and Y decay at same rate always

• question_answer17) A Carnot engine, having an efficiency of $\eta =1/10$ as heat engine, is used as a refrigerator. If the work done on the system is 10 J, the amount of energy absorbed from the reservoir at lower temperature is       AIEEE  Solved  Paper-2007

A)
99 J

B)
90 J

C)
1 J

D)
100 J

• question_answer18) Carbon, silicon and germanium have four valence electrons each. At room temperature, which one of the following statements is most appropriate?

A)
The number of free conduction electrons is significant in C but small in Si and$A=\left[ \begin{matrix} 5 & 5\alpha & \alpha \\ 0 & \alpha & 5\alpha \\ 0 & 0 & 5 \\ \end{matrix} \right]$

B)
The number of free conduction electrons is negligibly small in all the three

C)
The number of free electrons for conduction is significant in all the three

D)
The number of free electrons for conduction is significant only in$|{{A}^{2}}|=25,$and${{5}^{2}}$but small in C

• question_answer19) A charged particle with charge g enters a region of constant, uniform and mutually orthogonal fields $\vec{E}$ and $\vec{B}$ with a velocity v perpendicular to both $\vec{E}$ and $\vec{B}$ and comes out without any change in magnitude or direction of v. Then,       AIEEE  Solved  Paper-2007

A)
$\vec{v}=\vec{E}\times \vec{B}/{{B}^{2}}$

B)
$\vec{v}=\vec{B}\times \vec{E}/{{B}^{2}}$

C)
$\vec{v}=\vec{E}\times \vec{B}/{{E}^{2}}$

D)
$\vec{v}=\vec{B}\times \vec{E}/{{E}^{2}}$

• question_answer20) The potential at a point x (measured in${{e}^{-\frac{1}{2}}}$due to some charges situated on the x-axis is given by${{e}^{+\frac{1}{2}}}$volt. The electric field E at $x=4\,\mu m$ is given by       AIEEE  Solved  Paper-2007

A)
${{\tan }^{-1}}\frac{b}{ac}$and in the -ve$45{}^\circ$direction

B)
${{\tan }^{-1}}\frac{bc}{a(c-a)}$and in the +ve${{\tan }^{-1}}\frac{bc}{a}$direction

C)
${{y}^{2}}=8x$and in the -ve$y=x+2$direction

D)
${{x}^{2}}+{{y}^{2}}+{{z}^{2}}-6x-12y-2\text{ }z+20=0,$and in the +ve$a=\hat{i}+\hat{j}+\hat{k},b=\hat{i}-\hat{j}+2\hat{k}$direction

• question_answer21) Which of the following transitions in hydrogen atoms emit photons of highest frequency?       AIEEE  Solved  Paper-2007

A)
n = 2 to n = 6

B)
n = 6 to n = 2

C)
n = 2 to n = 1

D)
n = 1 to n = 2

• question_answer22) A block of mass m is connected to another block of mass M by a spring (massless) of spring constant k. The blocks are kept on a smooth horizontal plane. Initially the blocks are at rest and' the spring is unstretehed. Then, a constant force F starts acting on the block of mass M to pull it; Find the force on the block of mass m.     AIEEE  Solved  Paper-2007

A)
$c=x\hat{i}+(x-2)\hat{j}-\hat{k}$

B)
$x$

C)
$R=(3,3\sqrt{3})$

D)
$\angle PQR$

• question_answer23) Two lenses of power -15D and +5D are in contact with each other. The focal length of the combination is:       AIEEE  Solved  Paper-2007

A)
$\sqrt{3}x+y=0$

B)
$x+\frac{\sqrt{3}}{2}y=0$

C)
$\frac{\sqrt{3}}{2}x+y=0$

D)
$x+\sqrt{3}y=0$

• question_answer24) One end of a thermally insulated rod is kept at a temperature$m{{y}^{2}}+(1-{{m}^{2}})xy-m{{x}^{2}}=0$and the other at$xy=0,$. The rod is composed of two sections of lengths$-\frac{1}{2}$and$-2$ and thermal conductivities ${{K}_{1}}$ and ${{K}_{2}}$ respectively. The temperature at the interface of the two sections is AIEEE  Solved  Paper-2007

A)
$f(x)=\int_{1}^{x}{\frac{\log \,t}{1+t}}dt$

B)
$\frac{1}{2}$

C)
$f:R\to R$

D)
$f(x)=$

• question_answer25) A sound absorber attenuates the sound level by 20 dB. The intensity decreases by a factor of       AIEEE  Solved  Paper-2007

A)
1000

B)
10000

C)
10

D)
100

• question_answer26) If$min\{x+1,|~x|+1\}$and$f\{x\}\ge 1$denote the specific heats of nitrogen per unit mass at constant pressure and constant volume respectively, then       AIEEE  Solved  Paper-2007

A)
$x\in R$

B)
$f(x)$

C)
$x=1$

D)
$f(x)$

• question_answer27) A charged particle moves through a magnetic field perpendicular to its direction. Then,       AIEEE  Solved  Paper-2007

A)
the momentum changes but the kinetic energy is constant

B)
both momentum and kinetic energy of the particle are not constant

C)
both momentum and kinetic energy of the particle are constant

D)
kinetic energy changes but the momentum is constant

• question_answer28) Two identical conducting wires AOB and COD are placed at right angles to each other. The wire AOB carries an electric current$f(x)$and COD carries a current$x=0$. The magnetic field on a point lying at a distance d from O, in a direction perpendicular to the plane of the wires AOB and COD, will be given by       AIEEE  Solved  Paper-2007

A)
$\frac{{{\mu }_{0}}}{2\pi }\,{{\left( \frac{({{l}_{1}}+{{l}_{2}})}{d} \right)}^{1/2}}$

B)
$\frac{{{\mu }_{0}}}{2\pi d}\,{{(l_{1}^{2}+l_{2}^{2})}^{1/2}}$

C)
$\frac{{{\mu }_{0}}}{2\pi d}\,(l_{1}^{{}}+l_{2}^{{}})$

D)
$\frac{{{\mu }_{0}}}{2\pi d}\,(l_{1}^{2}+l_{2}^{2})$

• question_answer29) The resistance of a wire is$\int_{\sqrt{2}}^{x}{\frac{dt}{t\sqrt{{{t}^{2}}-1}}}=\pi /2$ at$\pi$and $\sqrt{3}/2$,at$2\sqrt{2}$ The resistance of the wire at $\int{\frac{dx}{\cos x+\sqrt{3}\sin x}}$ will be       AIEEE  Solved  Paper-2007

A)
$\frac{1}{2}\log \tan \left( \frac{x}{2}+\frac{\pi }{12} \right)+C$

B)
$\frac{1}{2}\log \tan \left( \frac{x}{2}-\frac{\pi }{12} \right)+C$

C)
$\log \tan \left( \frac{x}{2}+\frac{\pi }{12} \right)+C$

D)
$\log \tan \left( \frac{x}{2}-\frac{\pi }{12} \right)+C$

• question_answer30) A parallel plate ' condenser with a dielectric of dielectric constant K between the plates has a capacity C and is charged to a potential V volts. The dielectric slab is slowly removed from between the plates and then reinserted. The net work done by the system in this process is       AIEEE  Solved  Paper-2007

A)
${{y}^{2}}=x$

B)
$y=|\text{ }x|$

C)
$\frac{2}{3}$

D)
zero

• question_answer31) If$\frac{1}{6}$arid$\frac{1}{3}$are the accelerations due to gravity on the surfaces of the earth and the moon respectively and if Millikan's oil drop experiment could be performed on the two surfaces, one will find the ratio ${{x}^{2}}+ax+1=0$to be       AIEEE  Solved  Paper-2007

A)
1

B)
zero

C)
$\sqrt{5},$

D)
$(-3,\infty )$

• question_answer32) A circular disc of radius R is removed from a bigger circular disc of radius 2R, such that the circumference of the discs coincide. The centre of mass of the new disc is$(3,\infty )$from the centre of the bigger disc. The value of $\alpha$ is       AIEEE  Solved  Paper-2007

A)
$(-\infty ,-3)$

B)
$x=(2\times {{10}^{-2}})\cos \pi t$

C)
$a=2\times {{10}^{-2}}m=2cm$

D)
$t=0,$

• question_answer33) A round uniform body of radius R, mass M and moment of inertia$x=2\text{ }cm$rolls down (without slipping) an inclined plane making an angle $\theta$ with the horizontal. Then, its acceleration is       AIEEE  Solved  Paper-2007

A)
$\frac{g\sin \theta }{1+l/M{{R}^{2}}}$

B)
$\frac{g\sin \theta }{1+M{{R}^{2}}/l}$

C)
$\frac{g\sin \theta }{1-l/M{{R}^{2}}}$

D)
$\frac{g\sin \theta }{1-M{{R}^{2}}/l}$

• question_answer34) Angular momentum of the particle rotating with a central force is constant due to       AIEEE  Solved  Paper-2007

A)
constant force

B)
constant linear momentum

C)
zero torque

D)
constant torque

• question_answer35) A 2 kg block slides on a horizontal floor with a speed of 4 m/s. It strikes a uncompressed spring and compresses it till the block is motionless. The kinetic friction force is 15 N and spring constant is 10000 N/m. The spring compresses by       AIEEE  Solved  Paper-2007

A)
9.34cm

B)
2.5cm

C)
11.0cm

D)
8.5cm

• question_answer36) A particle is projected at$T=2s$to the horizontal with a kinetic energy K. The kinetic energy at the highest point is       AIEEE  Solved  Paper-2007

A)
K

B)
zero

C)
K/4

D)
K/2

• question_answer37) In a Young's double-slit experiment, the intensity at a point where the path difference is$=\frac{T}{4}=\frac{2}{4}=0.5s$ ($\pi /2$being the wavelength of the light used), is${{v}_{a}}=\frac{1}{4\pi {{\varepsilon }_{0}}}\frac{({{10}^{-3}})}{OA}$. If$=\frac{1}{4\pi {{\varepsilon }_{0}}}\frac{({{10}^{-3}})}{\sqrt{{{(\sqrt{2})}^{2}}+{{(\sqrt{2})}^{2}}}}$denotes the maximum intensity, ${{V}_{B}}=\frac{1}{4\pi {{\varepsilon }_{0}}}.\frac{({{10}^{-3}})}{OB}$is equal to       AIEEE  Solved  Paper-2007

A)
$=\frac{1}{4\pi {{\varepsilon }_{0}}}.\frac{({{10}^{-3}})}{2}$

B)
${{V}_{A}}-{{V}_{B}}=0$

C)
$=\frac{\frac{1}{2}qV}{qV}=\frac{1}{2}$

D)
$I={{I}_{0}}(1-{{e}^{-t/\tau }})$

• question_answer38) Two springs, of force constants${{I}_{0}}=\frac{E}{R}=\frac{5}{5}=1\,A$and$\tau =\frac{L}{R}=\frac{10}{5}=2\,s$are connected to a mass m as shown. The frequency of oscillation of the mass is $f$. If both$(\therefore -t/\tau =\frac{-2}{2}=-1)$and$J=\frac{i}{\pi {{a}^{2}}}$are made four times their original values, the frequency of. oscillation becomes AIEEE  Solved  Paper-2007

A)
$\oint{B.dl}={{\mu }_{0}}.{{i}_{enclosed}}$

B)
$\oint{B.dl}={{\mu }_{0}}.{{i}_{enclosed}}$

C)
$x=2\times {{10}^{-2}}$

D)
$cos\text{ }\pi t$

• question_answer39) When a system is taken from state$E={{E}_{0}}$to state f along the path $iaf,$ it is found that$sin\text{ }\omega t$ and$I={{I}_{0}}\sin \left( \omega t-\frac{\pi }{2} \right)$. Along the path ibf, $p=\frac{{{E}_{0}}{{I}_{0}}}{\sqrt{2}}$cal. W along the path $ibf$ is AIEEE  Solved  Paper-2007

A)
6 cal

B)
16 cal

C)
66 cal

D)
14 cal

• question_answer40) A particle of mass m executes simple harmonic motion with amplitude a and frequency v. The average kinetic energy during its motion from the position of equilibrium to the end is       AIEEE  Solved  Paper-2007

A)
$p=\frac{{{E}_{0}}{{I}_{0}}}{2}$

B)
$P=\sqrt{2}{{E}_{0}}{{I}_{0}}$

C)
${{10}^{-3}}\mu C$

D)
$(\sqrt{2},\sqrt{2})$

• question_answer41) The energies of activation for forward and reverse reactions for $\frac{1}{4}$ are $\frac{1}{2}$and$5\,\Omega$respectively. The presence of a catalyst lowers the activation energy of both (forward and reverse) reactions by$(1-e)$ The enthalpy change of the reaction $({{A}_{2}}-{{B}_{2}}\,\to 2\,\,AB)$ in the presence of catalyst will be (in$(1-{{e}^{-1}})$)       AIEEE  Solved  Paper-2007

A)
300

B)
120

C)
280

D)
-20

• question_answer42) The$\frac{a}{2}$$2a$was allowed to be completely discharged at 298 K. The relative concentration of$\frac{1}{4}$to$\frac{1}{2}$$I$is       AIEEE  Solved  Paper-2007

A)
Antilog (24.08)

B)
37.3

C)
${{M}_{O}}$

D)
$_{8}{{O}^{17}},{{M}_{p}}$

• question_answer43) The${{M}_{n}}$of a weak acid (H A) is 4.5. The$({{M}_{O}}-8{{M}_{p}}){{c}^{2}}$ of an aqueous buffered solution of HA in which 50% of the acid ionized is       AIEEE  Solved  Paper-2007

A)
4.5

B)
2.5

C)
9.5

D)
7.0

• question_answer44) Consider the reaction, $2A+B\to$ products When concentration of B alone was doubled, the half-life did not change. When the concentration of A alone was doubled, the rate increased by two times. The unit of rate constant for this reaction is       AIEEE  Solved  Paper-2007

A)
${{M}_{O}}{{c}^{2}}$

B)
no unit

C)
$({{M}_{O}}-17{{M}_{n}}){{c}^{2}}$

D)
$p-n$

• question_answer45) Identify the incorrect statement among the following.       AIEEE  Solved  Paper-2007

A)
d-block elements show irregular and erratic chemical properties among themselves

B)
La and Lu have partially filled d orbitals and no other partially filled orbitals

C)
The chemistry of various lanthanoids is very similar

D)
4f and 5f orbitals are equally shielded

• question_answer46) Which one of the following has a square planar geometry? (At. no.$hvc$)       AIEEE  Solved  Paper-2007

A)
$hv/{{c}^{2}}$

B)
$hv/c$

C)
$v={{V}_{0}}+gt+f{{t}^{2}}.$

D)
$x=0$

• question_answer47) Which of the following molecules is expected to rotate the plane of plane-polarised light?       AIEEE  Solved  Paper-2007

A) B) C) D) • question_answer48) The secondary structure of a protein refers to       AIEEE  Solved  Paper-2007

A)
$t=0,$helical backbone

B)
hydrophobic interactions

C)
sequence of a-amino acids

D)
fixed configuration of the polypeptide backbone

• question_answer49) Which of the following reactions will yield, 2, 2-dibromopropane?       AIEEE  Solved  Paper-2007

A)
$(t=1)$

B)
${{V}_{0}}+2g+3f$

C)
${{V}_{0}}+g/2+f/3$

D)
${{V}_{0}}+g+f$

• question_answer50) In the chemical reaction, ${{V}_{0}}+g/2+f$ $\sqrt{2}{{I}_{AC}}={{I}_{EF}}$the compounds (A) and (B) are respectively       AIEEE  Solved  Paper-2007

A)
${{I}_{AD}}=4{{I}_{EF}}$and ${{I}_{AC}}={{I}_{EF}}$

B)
${{I}_{AC}}=\sqrt{2}{{I}_{EF}}$and$x={{x}_{0}}\cos (\omega t-\pi /4)$

C)
$a=A\text{ }cos(\omega t+\delta ),$and $A={{x}_{0}},\text{ }\delta =-\pi /4$

D)
$A={{x}_{0}}{{\omega }^{2}},\text{ }\delta =\pi /4$and$A={{x}_{0}}{{\omega }^{2}},\text{ }\delta =-\pi /4$

• question_answer51) The  reaction of toluene with$A={{x}_{0}}{{\omega }^{2}},\text{ }\delta =3\pi /4$in the presence of $FeC{{l}_{3}}$ gives predominantly       AIEEE  Solved  Paper-2007

A)
benzoyl chloride

B)
benzyl chloride

C)
o - and p-chlorotoluene

D)
m-chlorotoluene

• question_answer52) Presence of a nitro group in a benzene ring       AIEEE  Solved  Paper-2007

A)
activates the ring towards electrophilic substitution

B)
renders the ring basic

C)
deactivates the ring towards nucleophilic substitution

D)
deactivates the ring towards electrophilic substitution

• question_answer53) In which of the following ionization processes, the bond order has, increased and the magnetic behaviour has changed?       AIEEE  Solved  Paper-2007

A)
$Ge$

B)
$Si$

C)
$Ge$

D)
$v=E\times B/{{B}^{2}}$

• question_answer54) The actinoids exhibit more number of oxidation states in general than the lanthanides. This is because       AIEEE  Solved  Paper-2007

A)
the$v=B\times E/{{B}^{2}}$orbitals are more buried than the $v=E\times B/{{E}^{2}}$orbitals

B)
there is a similarity between$v=B\times E/{{E}^{2}}$and$\mu m$ orbitals in their angular part of the wave function

C)
the actinoids are more reactive than the lanthanoids

D)
the$V(x)=20/({{x}^{2}}-4)$orbitals extend further from the nucleus than the$x=4$orbitals

• question_answer55) Equal masses of methane and oxygen are mixed in an empty container at$\frac{5}{3}V/\mu m$. The fraction of the total pressure exerted by oxygen is       AIEEE  Solved  Paper-2007

A)
$x$

B)
$\frac{5}{3}V/\mu m$

C)
$x$

D)
$\frac{10}{9}V/\mu m$

• question_answer56) A 5.25% solution of a substance is isotonic with a 1.5% solution of urea (molar mass $=60\,g\,mo{{l}^{-1}}$) in the same solvent. If the densities of both the solutions are assumed to be equal to$x$ the molar mass of the substance will be       AIEEE  Solved  Paper-2007

A)
$\frac{10}{9}V/\mu m$

B)
$x$

C)
$\frac{mF}{M}$

D)
$\frac{(M+m)F}{m}$

• question_answer57) Assuming that water vapour is an ideal gas, the internal energy change($\frac{mF}{(m+M)}$)when 1 mole of water is vapourised at 1 bar pressure and$\frac{MF}{(m+M)}$(Given : molar enthalpy of vaporisation of water at 1 bar and 373$-20cm$and$-10cm$)will be       AIEEE  Solved  Paper-2007

A)
$+20\text{ }cm$

B)
$+10\text{ }cm$

C)
${{T}_{1}}$

D)
${{T}_{2}}$

• question_answer58) In a saturated solution of the sparingly soluble strong electrolyte${{l}_{1}}$ (Molecular mass =283), the equilibrium which sets in, is ${{l}_{2}}$ If the solubility product constant, ${{k}_{1}}$of${{k}_{2}},$at a given temperature is$({{K}_{2}}{{l}_{2}}{{T}_{1}}+{{K}_{1}}{{l}_{1}}{{T}_{2}})/({{K}_{1}}{{l}_{1}}+{{K}_{2}}{{l}_{2}})$ what is the mass of $({{K}_{2}}{{l}_{1}}{{T}_{1}}+{{K}_{1}}{{l}_{2}}{{T}_{2}})/({{K}_{2}}{{l}_{1}}+{{K}_{1}}{{l}_{2}})$contained in 100 mL of its saturated solution?       AIEEE  Solved  Paper-2007

A)
$({{K}_{1}}{{l}_{2}}{{T}_{1}}+{{K}_{2}}{{l}_{1}}{{T}_{2}})/({{K}_{1}}{{l}_{2}}+{{K}_{2}}{{l}_{1}})$

B)
$({{K}_{1}}{{l}_{1}}{{T}_{1}}+{{K}_{2}}{{l}_{2}}{{T}_{2}})/({{K}_{1}}{{l}_{1}}+{{K}_{2}}{{l}_{2}})$

C)
${{C}_{p}}$

D)
${{C}_{y}}$

• question_answer59) A radioactive element gets spilled over the floor of a room. Its half-life period is 30 days. If the initial activity is ten times the permissible value, after how many days will it be safe to enter the room?       AIEEE  Solved  Paper-2007

A)
1000 days

B)
300 days

C)
10 days

D)
100 days

• question_answer60) Which one of the following conformations of cyclohexane is chiral?       AIEEE  Solved  Paper-2007

A)
Twist boat

B)
Rigid

C)
Chair

D)
Boat

• question_answer61) Which of the following is the correct order of decreasing${{C}_{p}}-{{C}_{y}}=R/28$reactivity? (${{C}_{p}}-{{C}_{v}}=R/14$halogen)       AIEEE  Solved  Paper-2007

A)
${{C}_{p}}-{{C}_{y}}=R$

B)
${{C}_{p}}-{{C}_{y}}=28R$

C)
${{I}_{1}}$

D)
${{I}_{2}}$

• question_answer62) In the following sequence of reactions $\frac{{{\mu }_{0}}}{2\pi }{{\left( \frac{{{I}_{1}}+{{I}_{2}}}{d} \right)}^{1/2}}$                                                 $\frac{{{\mu }_{0}}}{2\pi d}{{(I_{1}^{2}+I_{2}^{2})}^{1/2}}$ the compound 'D' is       AIEEE  Solved  Paper-2007

A)
butanal

B)
n-butyl alcohol

C)
n-propyl alcohol

D)
propanal

• question_answer63) Which of the following sets of quantum numbers represents the highest energy of an atom?       AIEEE  Solved  Paper-2007

A)
$\frac{{{\mu }_{0}}}{2\pi d}({{I}_{1}}+{{I}_{2}})$

B)
$\frac{{{\mu }_{0}}}{2\pi d}(I_{1}^{2}+I_{2}^{2})$

C)
$5\,\,\Omega$

D)
$50{}^\circ C$

• question_answer64) Which of the following hydrogen bonds is the strongest?       AIEEE  Solved  Paper-2007

A)
$6\,\Omega$

B)
$100{}^\circ C.$

C)
$0{}^\circ C$

D)
$2\,\Omega$

• question_answer65) In the reaction,  $1\,\Omega$                                 $4\,\Omega$       AIEEE  Solved  Paper-2007

A)
$3\,\Omega$ is consumed for every$\frac{1}{2}(K-1)C{{V}^{2}}$ produced

B)
$C{{V}^{2}}(K-1)/K$is' produced regardless of temperature and pressure for every mole of$(K-1)C{{V}^{2}}$that reacts

C)
${{g}_{E}}$ at STP is produced for every mole of${{g}_{M}}$that reacts

D)
$\frac{electronic\text{ }charge\text{ }on\text{ }the\text{ }moon}{electronic\text{ }charge\text{ }on\text{ }the\text{ }earth}$at STP is produced for every mole of${{g}_{E}}/{{g}_{M}}$consumed

• question_answer66) Regular use of which of the following fertilizers increases the acidity of soil?       AIEEE  Solved  Paper-2007

A)
Potassium nitrate

B)
Urea

C)
Superphosphate of lime

D)
Ammonium sulphate

• question_answer67) Identify the correct statement regarding a spontaneous process       AIEEE  Solved  Paper-2007

A)
For a spontaneous process in an isolated system, the change in entropy is positive

B)
Endothermic processes are never spontaneous

C)
Exothermic processes are always spontaneous

D)
Lowering of energy in the reaction process is the only criterion for spontaneity

• question_answer68) Which of the following nuclear reactions will generate an isotope?       AIEEE  Solved  Paper-2007

A)
Neutron particle emission

B)
Positron emission

C)
${{g}_{M}}/{{g}_{E}}$ particle emission

D)
$\frac{\alpha }{R}$ particle emission

• question_answer69) The equivalent conductances of two strong electrolytes at infinite dilution in$\frac{1}{3}$ (where ions move freely through a solution) at$\frac{1}{2}$are given below $\frac{1}{6}$ $\frac{1}{4}$ What additional information/quantity one needs to calculate$I,$of an aqueous solution of acetic acid?       AIEEE  Solved  Paper-2007

A)
$\frac{g\sin \theta }{1+I/M{{R}^{2}}}$ of$\frac{g\sin \theta }{1+M{{R}^{2}}/I}$

B)
$\frac{g\sin \theta }{1-I/M{{R}^{2}}}$ of$\frac{g\sin \theta }{1-M{{R}^{2}}/I}$

C)
The limiting equivalent conductance of $60{}^\circ$

D)
$\frac{\lambda }{6}$of chloroacetic acid$\lambda$

• question_answer70) Which one of the following is the strongest base in aqueous solution?       AIEEE  Solved  Paper-2007

A)
Trimethylamine

B)
Aniline

C)
Dimethylamine

D)
Methylamine

• question_answer71) The compound formed as a result of oxidation of ethyl benzene by$I$is       AIEEE  Solved  Paper-2007

A)
benzophenone

B)
acetophenone

C)
benzoicacid

D)
benzyl alcohol

• question_answer72) The IUPAC name of is       AIEEE  Solved  Paper-2007

A)
1, 1-diethyl-2, 2-dimethylpentane

B)
4, 4-dimethyl-5, 5-diethylpentane

C)
5, 5-diethyl-4, 4-dimethylpentane

D)
3-ethyl-4, 4-dimethylheptane

• question_answer73) Which of the following species exhibits the diamagnetic behaviour?       AIEEE  Solved  Paper-2007

A)
${{I}_{0}}$

B)
$I/{{I}_{0}}$

C)
$\frac{1}{\sqrt{2}}$

D)
$\frac{\sqrt{3}}{2}$

• question_answer74) The stability of dihalides of$\frac{1}{2}$ and$\frac{3}{4}$increases steadily in the sequence       AIEEE  Solved  Paper-2007

A)
${{k}_{1}}$

B)
${{k}_{2}},$

C)
$I$

D)
${{I}_{0}}$

• question_answer75) Identify the incorrect statement among the following.       AIEEE  Solved  Paper-2007

A)
Ozone reacts with${{k}_{1}}$to give${{k}_{2}}$

B)
Silicon reacts with$f/2$in the presence of air to give$f/4$and$4f$

C)
$2f$reacts with excess of$i$to give$\text{Q}=50\text{ }cal$and$W=20\text{ }cal$

D)
$Q=36$reacts with hot and strong${{\pi }^{2}}m{{a}^{2}}{{v}^{2}}$solution to give$\frac{1}{4}m{{a}^{2}}{{v}^{2}}$and$4{{\pi }^{2}}m{{a}^{2}}{{v}^{2}}$

• question_answer76) The charge/size ratio of a cation determines its polarizing power. Which one of the following sequences represents the increasing order of the polarizing power of the cationic species: $2{{\pi }^{2}}m{{a}^{2}}{{v}^{2}}$       AIEEE  Solved  Paper-2007

A)
${{A}_{2}}+{{B}_{2}}2AB$

B)
$180\text{ }kJ\,mo{{l}^{-1}}$

C)
$200\,kJ\,mo{{l}^{-1}}$

D)
$100\text{ }kJ\text{ }mo{{l}^{-1}}.$

• question_answer77) The density (in$({{A}_{2}}+{{B}_{2}}\xrightarrow[{}]{{}}2AB)$) of a 3.60 M sulphuric acid solution that is 29%$kJ\text{ }mo{{l}^{-1}}$ (molar mass$Zn|Z{{n}^{2+}}(1M)||C{{u}^{2+}}(1M)|Cu$) by mass will be       AIEEE  Solved  Paper-2007

A)
1.64

B)
1.88

C)
1.22

D)
1.45

• question_answer78) The first and second dissociation constants of an acid $(E_{cell}^{o}=1.10V),$ are$Z{{n}^{2+}}$and $C{{u}^{2+}}$ respectively. The overall dissociation constant of the acid will be       AIEEE  Solved  Paper-2007

A)
$\left( \frac{[Z{{n}^{2+}}]}{[C{{u}^{2+}}]} \right)$

B)
${{10}^{37.3}}$

C)
$9.65\times {{10}^{4}}$

D)
$p{{K}_{a}}$

• question_answer79) A mixture of ethyl alcohol and propyl alcohol has a vapour pressure of 290 mm at 300 K. The vapour pressure of propyl alcohol is 200 mm. If the mole fraction of ethyl alcohol is 0.6, its vapour pressure (in mm) at the same temperature will be       AIEEE  Solved  Paper-2007

A)
350

B)
300

C)
700

D)
360

• question_answer80) In conversion of limestone to lime, $pOH$ the values of$2A+B\xrightarrow[{}]{{}}products$and$L\,mo{{l}^{-1}}{{s}^{-1}}$are$mol\,{{L}^{-1}}{{s}^{-1}}$${{s}^{-1}}$and$Co=27,Ni=28,Fe=26,Pt=78$respectively at 298 K and 1 bar. Assuming that${{[COC{{l}_{4}}]}^{2-}}$and${{[FeC{{l}_{4}}]}^{2-}}$do not change with temperature, temperature above which conversion of limestone to lime will be spontaneous is       AIEEE  Solved  Paper-2007

A)
1008 K

B)
1200 K

C)
845 K

D)
1118 K

• question_answer81) In a geometric progression consisting of positive terms, each term equals the sum of the next two terms. Then, the common ratio of this progression equals       AIEEE  Solved  Paper-2007

A)
${{[NiC{{l}_{4}}]}^{2-}}$

B)
${{[PtC{{l}_{4}}]}^{2-}}$

C)
$\alpha -$

D)
$C{{H}_{3}}-C\equiv CH+2HBr\xrightarrow[{}]{{}}$

• question_answer82) If$C{{H}_{3}}CH\equiv CHBr+HBr\xrightarrow[{}]{{}}$then a value of$CH\equiv CH+2HBr\xrightarrow[{}]{{}}$is       AIEEE  Solved  Paper-2007

A)
1

B)
3

C)
4

D)
5

• question_answer83) In the binomial expansion of$C{{H}_{3}}CH=C{{H}_{2}}+HBr\xrightarrow[{}]{{}}$the sum of 5th and 6th terms is zero, then$C{{H}_{3}}C{{H}_{2}}N{{H}_{2}}+CHC{{l}_{3}}+3KOH\xrightarrow[{}]{{}}$equals       AIEEE  Solved  Paper-2007

A)
$(A)+(B)+3{{H}_{2}}O,$

B)
${{C}_{2}}{{H}_{5}}CN$

C)
$3KCl$

D)
$C{{H}_{3}}C{{H}_{2}}CON{{H}_{2}}$

• question_answer84) The set S = {1, 2, 3,..., 12} is to be partitioned into three sets A, B, C of equal size. Thus, $3KCl$ ${{C}_{2}}{{H}_{5}}NC$The number of ways to partition S is       AIEEE  Solved  Paper-2007

A)
${{K}_{2}}C{{O}_{3}}$

B)
${{C}_{2}}{{H}_{5}}NC$

C)
$3KCl$

D)
$C{{l}_{2}}$

• question_answer85) The largest interval lying in$FeCl,$ which the function ${{C}_{2}}\xrightarrow[{}]{{}}C_{2}^{+}$ is defined, is       AIEEE  Solved  Paper-2007

A)
$NO\xrightarrow[{}]{{}}N{{O}^{+}}$

B)
${{O}_{2}}\xrightarrow[{}]{{}}O_{2}^{+}$

C)
$\left[ -\frac{\pi }{4},\,\frac{\pi }{2} \right)$

D)
$5f$

• question_answer86) A body weighing 13 kg is suspended by two strings 5 m and 12 m long, their other ends being fastened to the extremities of a rod 13 m long. If the rod be so held that the body hangs immediately below the middle point. The tensions in the strings are       AIEEE  Solved  Paper-2007

A)
12 kg and 13 kg

B)
5 kg and 5 kg

C)
5 kg and 12 kg

D)
5 kg and 13 kg

• question_answer87) A pair of fair dice is thrown independently three times. The probability of getting a score of exactly 9 twice is       AIEEE  Solved  Paper-2007

A)
1/729

B)
8/9

C)
8/729

D)
8/243

• question_answer88) Consider a family of circles which are passing through the point (-1, 1) and are touching X-axis. If (h, k) are the coordinates of the centre of the circles, then the set of values of k is given by the interval       AIEEE  Solved  Paper-2007

A)
$4f$

B)
$4f$

C)
$5f$

D)
$5f$

• question_answer89) Let L be the line of intersection of the planes $4f$and$25{}^\circ C$. If L makes an angle a with the positive x-axis, then$\frac{2}{3}$ equals       AIEEE  Solved  Paper-2007

A)
$\frac{1}{3}\times \frac{273}{298}$

B)
1/2

C)
1

D)
$\frac{1}{3}$

• question_answer90) The differential equation of all circles passing through the origin and having their centres on the X-axis is       AIEEE  Solved  Paper-2007

A)
$\frac{1}{2}$

B)
$1.0\text{ }g\,c{{m}^{-3}},$

C)
$90.0\text{ }g\,mo{{l}^{-1}}$

D)
$\text{115}\text{.0 }g\,mo{{l}^{-1}}$

• question_answer91) If p and g are positive real numbers such that $\text{105}\text{.0 }g\,mo{{l}^{-1}}$then the maximum value of$\text{210}\text{.0 }g\,mo{{l}^{-1}}$is       AIEEE  Solved  Paper-2007

A)
2

B)
$\Delta U$

C)
$100{}^\circ C,$

D)
$K=41\text{ }kJ\text{ }mo{{l}^{-1}}$

• question_answer92) A tower stands at the centre of a circular park. A and B are two points on the boundary of the park such that AB (= a) subtends an angle of $R=8.3\text{ }J\text{ }mo{{l}^{-1}}$at the/foot of the tower and the angle of elevation of the top of the tower from A or B is$4.100\,kJ\,mo{{l}^{-1}}$. The height of the tower is       AIEEE  Solved  Paper-2007

A)
$3.7904\text{ }kJ\,mo{{l}^{-1}}$

B)
$37.904\text{ }kJ\text{ }mo{{l}^{-1}}$

C)
$41.00\text{ }kJ\text{ }mo{{l}^{-1}}$

D)
$AgI{{O}_{3}}$

• question_answer93) The sum of the series, $^{20}{{C}_{0}}{{-}^{20}}{{C}_{1}}{{+}^{20}}{{C}_{2}}{{-}^{20}}{{C}_{3}}\,+...-...{{+}^{20}}{{C}_{10}}$ is       AIEEE  Solved  Paper-2007

A)
${{K}_{sp}}$

B)
$AgI{{O}_{3}}$

C)
0

D)
$1.0\times {{10}^{-8}},$

• question_answer94) The normal to a curve at$AgI{{O}_{3}}$meets the x-axis at G. If the distance of G from the origin is twice the abscissa of P, then the curve is a       AIEEE  Solved  Paper-2007

A)
ellipse

B)
parabola

C)
circle

D)
hyperbola

• question_answer95) If $28.3\times {{10}^{-2}}g$then the maximum value of$2.83\times {{10}^{-3}}g$is       AIEEE  Solved  Paper-2007

A)
4

B)
10

C)
6

D)
0

• question_answer96) The resultant of two forces P N and 3 N is a force of 7 N. If the direction of the 3 N force were reversed, the resultant would be $\sqrt{19}N$. The value of P is       AIEEE  Solved  Paper-2007

A)
5 N

B)
6 N

C)
3 N

D)
4 N

• question_answer97) Two aeroplanes I and II bomb a target in succession. The probabilities of I and II scoring a hit correctly are 0.3 and 0.2, respectively. The second plane will bomb only if the first misses the target. The probability that the target is hit by the second plane is       AIEEE  Solved  Paper-2007

A)
0.06

B)
0.14

C)
0.2

D)
0.7

• question_answer98) If$1.0\times {{10}^{-7}}g$for$1.0\times {{10}^{-4}}g$,${{S}_{N}}2$then D is       AIEEE  Solved  Paper-2007

A)
divisible by neither$X=a$nor y

B)
divisible by both$RC{{H}_{2}}X>{{R}_{3}}CX>{{R}_{2}}CHX$and y

C)
divisible by$RC{{H}_{2}}X>{{R}_{2}}CHX>{{R}_{3}}CX$but not y

D)
divisible by y but not${{R}_{3}}CX>{{R}_{2}}CHX>RC{{H}_{2}}X$

• question_answer99) For the hyperbola ${{R}_{2}}CHX>{{R}_{3}}CX>RC{{H}_{2}}X$which of the following remains constant when $\alpha$ varies?       AIEEE  Solved  Paper-2007

A)
Eccentricity

B)
Directrix

C)
Abscissae of vertices

D)
Abscissae of foci

• question_answer100) If a line makes an angle of $C{{H}_{3}}C{{H}_{2}}OH\xrightarrow[{}]{P+{{I}_{2}}}A\xrightarrow[Ether]{Mg}B\xrightarrow[{}]{HCHO}$with the positive directions of each of X-axis and Y-axis, then the angle that the line makes with the positive direction of the Z-axis is       AIEEE  Solved  Paper-2007

A)
$C\xrightarrow[{}]{{{H}_{2}}O}D$

B)
$n=3,\text{ }l=1,\text{ }m=1,\text{ }s=+\text{ }1/2$

C)
$n=3,l=2,m=1,s=+1/2$

D)
$n=4,\text{ }l=0,\text{ }m=0,\text{ }s=+\text{ }1/2$

• question_answer101) A value of C for which the conclusion of Mean Value Theorem holds for the function$n=3,\text{ }l=0,\text{ }m=0,\text{ }s=+\text{ }1/2$ $OH...N$ the interval [1, 3] is       AIEEE  Solved  Paper-2007

A)
$FH...F$

B)
$OH...O$

C)
$OH...F$

D)
$2Al(s)+6HCl(aq)\xrightarrow[{}]{{}}2A{{l}^{3+}}(aq)$

• question_answer102) The function$+6C{{l}^{-}}(aq)+3{{H}_{2}}(g)$is an increasing function in       AIEEE  Solved  Paper-2007

A)
$6\text{ }L\text{ }HCl(aq)$

B)
$3\text{ }L\text{ }{{H}_{2}}(g)$

C)
$33.6\,L\,{{H}_{2}}(g)$

D)
$Al$

• question_answer103) Let$67.2\text{ }L\,{{H}_{2}}(g)$. If$Al$then | a| equals       AIEEE  Solved  Paper-2007

A)
$11.2\,L\,{{H}_{2}}(g)$

B)
1

C)
$HCl(aq)$

D)
5

• question_answer104) The sum of the series$\alpha -$upto infinity is       AIEEE  Solved  Paper-2007

A)
$\beta -$

B)
${{H}_{2}}O$

C)
$25{}^\circ C$

D)
$\Lambda _{C{{H}_{3}}COONa}^{o}=91.0\text{ }S\text{ }c{{m}^{2}}/equiv$

• question_answer105) If $\hat{u}$ and $\hat{v}$ are unit vectors and $\theta$ is the acute angle between them, then$\Lambda _{HCl}^{o}=426.2\text{ }S\text{ }c{{m}^{2}}/equiv$is a unit vector for       AIEEE  Solved  Paper-2007

A)
exactly two values of $\theta$

B)
more than two values of $\theta$

C)
no value of $\theta$

D)
exactly one value of $\theta$

• question_answer106) A particle just clears a wall of height b at a distance a and strikes the ground at a distance c from the point of projection. The angle of projection is       AIEEE  Solved  Paper-2007

A)
${{\Lambda }^{o}}$

B)
${{\Lambda }^{o}}$

C)
$NaCl$

D)
${{\Lambda }^{o}}$

• question_answer107) The average marks of boys in a class is 52 and that of "girls is 42. The average marks of boys and girls combined is 50. The percentage of boys in the class is       AIEEE  Solved  Paper-2007

A)
40

B)
20

C)
80

D)
60

• question_answer108) The equation of a tangent to the parabola $C{{H}_{3}}COOK$is${{H}^{+}}(\lambda _{{{H}^{+}}}^{o})$. The point on this line from which the other tangent to the parabola is perpendicular to the given tangent is       AIEEE  Solved  Paper-2007

A)
(-1, 1)

B)
(0, 2)

C)
(2, 4)

D)
(-2, 0)

• question_answer109) If (21 3, 5) is one end of a diameter of the sphere ${{\Lambda }^{o}}$ then the coordinates of the other end of the diameter are       AIEEE  Solved  Paper-2007

A)
(4, 9,-3)

B)
(4,-3, 3)

C)
(4, 3, 5)

D)
(4, 3, -3)

• question_answer110) Let $(CIC{{H}_{2}}COOH)$and$KMn{{O}_{4}}$ If the vector $\vec{c}$ lies in the plane of $\vec{a}$ and $\vec{b}$, then$O_{2}^{2-}$equals

A)
0

B)
1

C)
-4

D)
-2

• question_answer111) Let A(h, k), B(1, 1) and C(2, 1) be the vertices of a right angled triangle with AC as its hypotenuse. If the area of the triangle is 1, then the set of values which 'k' can take is given by       AIEEE  Solved  Paper-2007

A)
{1, 3}

B)
{0, 2}

C)
{-1, 3}

D)
{-3,-2}

• question_answer112) Let P = (-1, 0), Q = (0, 0) and$O_{2}^{+}$ be three points. The equation of the bisector of ${{O}_{2}}$is       AIEEE  Solved  Paper-2007

A)
$NO$

B)
$Si,Ge,Sn$

C)
$Pb$

D)
$Ge{{X}_{2}}<Si{{X}_{2}}<Sn{{X}_{2}}<Pb{{X}_{2}}$

• question_answer113) If one of the lines of$Si{{X}_{2}}<Ge{{X}_{2}}<Pb{{X}_{2}}<Sn{{X}_{2}}$is a bisector of the angle between the lines$Si{{X}_{2}}<Ge{{X}_{2}}<Sn{{X}_{2}}<Pb{{X}_{2}}$then m is       AIEEE  Solved  Paper-2007

A)
$Pb{{X}_{2}}<Sn{{X}_{2}}<Ge{{X}_{2}}<Si{{X}_{2}}$

B)
$S{{O}_{2}}$

C)
$S{{O}_{3}}$

D)
2

• question_answer114) Let$NaOH(aq)$where$N{{a}_{2}}Si{{O}_{3}}$Then, F(e) equals       AIEEE  Solved  Paper-2007

A)
${{H}_{2}}O$

B)
0

C)
1

D)
2

• question_answer115) Let$C{{l}_{2}}$be a function denned by $N{{H}_{3}}$${{N}_{2}}$. Then, which of the following is true?       AIEEE  Solved  Paper-2007

A)
$HCl$for all$B{{r}_{2}}$

B)
$NaOH$is not differentiate at$NaBr,NaBr{{O}_{4}}$

C)
${{H}_{2}}O$is differentiable everywhere

D)
${{K}^{+}},C{{a}^{2+}},M{{g}^{2+}},B{{e}^{2+}}$is not differentiable at$M{{g}^{2+}}<B{{e}^{2+}}<{{K}^{+}}<C{{a}^{2+}}$

• question_answer116) The function$B{{e}^{2+}}<{{K}^{+}}<C{{a}^{2+}}<M{{g}^{2+}}$given by ${{K}^{+}}<C{{a}^{2+}}<M{{g}^{2+}}<B{{e}^{2+}}$ can be made continuous at$C{{a}^{2+}}<M{{g}^{2+}}<B{{e}^{2+}}<{{K}^{+}}$by defining f(0) as       AIEEE  Solved  Paper-2007

A)
2

B)
-1

C)
0

D)
1

• question_answer117) The solution for$g\text{ }m{{L}^{-1}}$of the equation ${{H}_{2}}S{{O}_{4}}$is.       AIEEE  Solved  Paper-2007

A)
2

B)
$=98\text{ }g\text{ }mo{{l}^{-1}}$

C)
${{H}_{2}}A$

D)
$1.0\times {{10}^{-5}}$

• question_answer118) $5.0\times {{10}^{-10}}$equals       AIEEE  Solved  Paper-2007

A)
$\frac{1}{2}\log \,\tan \,\left( \frac{x}{2}+\frac{\pi }{12} \right)+C$

B)
$\frac{1}{2}\log \tan \,\left( \frac{x}{2}-\,\frac{\pi }{12} \right)\,+C$

C)
$\log \,\tan \,\left( \frac{x}{2}+\frac{\pi }{12}\, \right)+C$

D)
$\log \,\tan \,\left( \frac{x}{2}-\frac{\pi }{12} \right)+C$

• question_answer119) The area enclosed between the curves$CaC{{O}_{3}}(s)\xrightarrow{{}}CaO(s)+C{{O}_{2}}(g)$ and$\Delta H{}^\circ$is       AIEEE  Solved  Paper-2007

A)
$\Delta S{}^\circ$

B)
1

C)
$+179.1\text{ }kJ$

D)
$mo{{l}^{-1}}$

• question_answer120) If the difference between the roots of the equation$160.2\text{ }J/K$is less than$\Delta H{}^\circ$then the set of possible values of a is       AIEEE  Solved  Paper-2007

A)
(-3, 3)

B)
$\Delta S{}^\circ$

C)
$\frac{1}{2}(1-\sqrt{5})$

D)
$\frac{1}{2}\sqrt{5}$

You will be redirected in 3 sec 