Current Affairs JEE Main & Advanced

An ellipse is the locus of a point which moves in such a way that its distance from a fixed point is in constant ratio \[(<1)\] to its distance from a fixed line. The fixed point is called the focus and fixed line is called the directrix and the constant ratio is called the eccentricity of the ellipse, denoted by (e).  

Let S be the focus, ZM be the directrix of the ellipse and \[P(x,y)\]is any point on the ellipse, then by definition \[\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\], where \[{{b}^{2}}={{a}^{2}}(1-{{e}^{2}})\].   Since \[e<1\], therefore \[{{a}^{2}}(1-{{e}^{2}})<{{a}^{2}}\] Þ \[{{b}^{2}}<{{a}^{2}}\].            The other form of equation of ellipse is \[\frac{{{x}^{2}}}{{{y}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\], where, \[{{a}^{2}}={{b}^{2}}(1-{{e}^{2}})\,i.e.,\,a<b\].         Difference between both ellipses will be clear from the following table :  
Ellipse   \[\left\{ \frac{{{x}^{\mathbf{2}}}}{{{a}^{\mathbf{2}}}}+\frac{{{y}^{\mathbf{2}}}}{{{b}^{\mathbf{2}}}}=\mathbf{1} \right\}\]
Imp. terms
  For \[\mathbf{a>b}\] For \[\mathbf{b>a}\]
Centre \[(0,\,\,0)\] \[(0,\,\,0)\]
Vertices \[(\pm a,\,0)\] \[(0,\,\pm b)\]
Length of major axis \[2a\] \[2b\]
Length of minor axis \[2b\] more...
Let the equation of ellipse in standard form will be given by \[\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\].    Then the equation of ellipse in the parametric form will be given by \[x=a\cos \varphi ,y=b\sin \varphi \], where \[\varphi \] is the eccentric angle whose value vary from \[0\le \varphi <2\pi \]. Therefore coordinate of any point P on the ellipse will be given by \[(a\cos \varphi \,,\,b\sin \varphi )\].

(1) If the centre of the ellipse is at point \[(h,k)\] and the directions of the axes are parallel to the coordinate axes, then its equation is \[\frac{{{(x-h)}^{2}}}{{{a}^{2}}}+\frac{{{(y-k)}^{2}}}{{{b}^{2}}}=1\].     (2) If the equation of the curve is \[\frac{{{(lx+my+n)}^{2}}}{{{a}^{2}}}\] \[+\frac{{{(mx-ly+p)}^{2}}}{{{b}^{2}}}=1\], where \[lx+my+n=0\] and \[mx-ly+p=0\] are perpendicular lines, then we substitute \[\frac{lx+my+n}{\sqrt{{{l}^{2}}+{{m}^{2}}}}=X,\] \[\frac{mx-ly+p}{\sqrt{{{l}^{2}}+{{m}^{2}}}}=Y\], to put the equation in the standard form.

Let \[P({{x}_{1}},{{y}_{1}})\]be any point and let \[\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\] is the equation of an ellipse. The point lies outside, on or inside the ellipse as if \[{{S}_{1}}=\frac{x_{1}^{2}}{{{a}^{2}}}+\frac{y_{1}^{2}}{{{b}^{2}}}-1>,\,\,=,<0\]    

The line \[y=mx+c\] intersects the ellipse \[\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\] in two distinct points if \[{{a}^{2}}{{m}^{2}}+{{b}^{2}}>{{c}^{2}}\], in one point if \[{{c}^{2}}={{a}^{2}}{{m}^{2}}+{{b}^{2}}\] and does not intersect if \[{{a}^{2}}{{m}^{2}}+{{b}^{2}}<{{c}^{2}}\].  

(1) Point form: The equation of the tangent to the ellipse \[\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\] at the point \[({{x}_{1}},{{y}_{1}})\] is \[\frac{x{{x}_{1}}}{{{a}^{2}}}+\frac{y{{y}_{1}}}{{{b}^{2}}}=1\].     (2) Slope form: If the line \[y=mx+c\]touches the ellipse \[\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\], then \[{{c}^{2}}={{a}^{2}}{{m}^{2}}+{{b}^{2}}\]. Hence, the straight line \[y=mx\pm \sqrt{{{a}^{2}}{{m}^{2}}+{{b}^{2}}}\]always represents the tangents to the ellipse.     Points of contact: Line \[y=mx\pm \sqrt{{{a}^{2}}{{m}^{2}}+{{b}^{2}}}\] touches the ellipse \[\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\] at  \[\left( \frac{\pm {{a}^{2}}m}{\sqrt{{{a}^{2}}{{m}^{2}}+{{b}^{2}}}},\frac{\mp {{b}^{2}}}{\sqrt{{{a}^{2}}{{m}^{2}}+{{b}^{2}}}} \right)\].       (3) Parametric form: The equation of tangent at any point \[(a\cos \varphi ,b\sin \varphi )\] is \[\frac{x}{a}\cos \varphi +\frac{y}{b}\sin \varphi =1\].

Pair of tangents: The equation of pair of tangents PA and PB is \[S{{S}_{1}}={{T}^{2}}\],         where \[S\equiv \frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}-1\]   \[{{S}_{1}}\equiv \frac{x_{1}^{2}}{{{a}^{2}}}+\frac{y_{1}^{2}}{{{b}^{2}}}-1\]   \[T\equiv \frac{x{{x}_{1}}}{{{a}^{2}}}+\frac{y{{y}_{1}}}{{{b}^{2}}}-1\]   Director circle: The director circle is the locus of points from which perpendicular tangents are drawn to the ellipse.   Hence locus of \[P({{x}_{1}},{{y}_{1}})\]i.e., equation of director circle is \[{{x}^{2}}+{{y}^{2}}={{a}^{2}}+{{b}^{2}}\].

(1) Point form: The equation of the normal at \[({{x}_{1}},{{y}_{1}})\]to the ellipse \[\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\]is \[\frac{{{a}^{2}}x}{{{x}_{1}}}-\frac{{{b}^{2}}y}{{{y}_{1}}}={{a}^{2}}-{{b}^{2}}\].     (2) Parametric form: The equation of the normal to the ellipse \[\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\] at \[(a\cos \varphi ,b\sin \varphi )\] is \[ax\sec \varphi -by\,\text{cos}\text{ec}\varphi =\] \[{{a}^{2}}-{{b}^{2}}\].     (3) Slope form: If m is the slope of the normal to the ellipse \[\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\], then the equation of normal is \[y=mx\pm \frac{m({{a}^{2}}-{{b}^{2}})}{\sqrt{{{a}^{2}}+{{b}^{2}}{{m}^{2}}}}\].     The co-ordinates of the point of contact are  \[\left( \frac{\pm {{a}^{2}}}{\sqrt{{{a}^{2}}+{{b}^{2}}{{m}^{2}}}},\frac{\pm m{{b}^{2}}}{\sqrt{{{a}^{2}}+{{b}^{2}}{{m}^{2}}}} \right)\] .

The circle described on the major axis of an ellipse as diameter is called an auxiliary circle of the ellipse.     If \[\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\] is an ellipse, then its auxiliary circle is \[{{x}^{2}}+{{y}^{2}}={{a}^{2}}\].     Eccentric angle of a point: Let P be any point on the ellipse \[\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\]. Draw PM perpendicular from P on the major axis of the ellipse and produce MP to meet the auxiliary circle in Q. Join CQ. The angle \[\angle XCQ=\varphi \] is called the eccentric angle of the point P on the ellipse.     Note that the angle \[\angle XCP\] is not the eccentric angle of point P.


You need to login to perform this action.
You will be redirected in 3 sec spinner