1 | \[{{(x+y)}^{0}}\] | |||||||||||
1 | 1 | \[{{(x+y)}^{1}}\] | ||||||||||
1 | 2 | 1 | \[{{(x+y)}^{2}}\] | |||||||||
1 | 3 | 3 | more...
(1) If consecutive coefficients are given: In this case divide consecutive coefficients pair wise. We get equations and then solve them.
(2) If consecutive terms are given : In this case divide consecutive terms pair wise i.e. if four consecutive terms be \[{{T}_{r}},\,{{T}_{r+1}},\,{{T}_{r+2}},\,{{T}_{r+3}}\] then find \[\frac{{{T}_{r}}}{{{T}_{r+1}}},\,\frac{{{T}_{r+1}}}{{{T}_{r+2}}},\,\frac{{{T}_{r+2}}}{{{T}_{r+3}}}\] \[\Rightarrow \] \[{{\lambda }_{1}},\,{{\lambda }_{2}},\,{{\lambda }_{3}}\] (say) then divide \[{{\lambda }_{1}}\] by \[{{\lambda }_{2}}\] and \[{{\lambda }_{2}}\] by \[{{\lambda }_{3}}\] and solve.
Statement :
\[{{(1+x)}^{n}}=1+nx+\frac{n(n-1){{x}^{2}}}{2!}+\frac{n(n-1)\,(n-2)}{3!}{{x}^{3}}+....\]\[+\frac{n(n-1)\,......(n-r+1)}{r!}{{x}^{r}}+...\text{terms up to }\infty \]
when \[n\] is a negative integer or a fraction, where \[-1<x<1\], otherwise expansion will not be possible.
If first term is not 1, then make first term unity in the following way, \[{{(x+y)}^{n}}={{x}^{n}}{{\left[ 1+\frac{y}{x} \right]}^{n}}\], if \[\left| \,\frac{y}{x}\, \right|<1\].
General term : \[{{T}_{r+1}}=\frac{n(n-1)(n-2)......(n-r+1)}{r!}{{x}^{r}}\]
Some important expansions
(i) \[{{(1+x)}^{n}}=1+nx+\frac{n(n-1)}{2!}{{x}^{2}}+\] \[.......+\frac{n(n-1)\,(n-2)......(n-r+1)}{r!}{{x}^{r}}+......\]
(ii) \[{{(1-x)}^{n}}=1-nx+\frac{n(n-1)}{2!}{{x}^{2}}-.......\] \[+\frac{n(n-1)(n-2).....(n-r+1)}{r!}{{(-x)}^{r}}+.......\]
(iii) \[{{(1-x)}^{-n}}=1+nx+\frac{n(n+1)}{2!}{{x}^{2}}+\frac{n(n+1)\,(n+2)}{3!}{{x}^{3}}+\]\[.....+\frac{n(n+1)......(n+r-1)}{r\,!}{{x}^{r}}+.....\]
(iv) \[{{(1+x)}^{-n}}=1-nx+\frac{n(n+1)}{2!}{{x}^{2}}-\frac{n(n+1)(n+2)}{3\,!}{{x}^{3}}+\]\[.....+\frac{n(n+1)......(n+r-1)}{r!}{{(-x)}^{r}}+......\]
(v) \[{{(1+x)}^{-1}}=1-x+{{x}^{2}}-{{x}^{3}}+.......\infty \]
(vi) \[{{(1-x)}^{-1}}=1+x+{{x}^{2}}+{{x}^{3}}+.......\infty \]
(vii) \[{{(1+x)}^{-2}}=1-2x+3{{x}^{2}}-4{{x}^{3}}+.......\infty \]
(viii) \[{{(1-x)}^{-2}}=1+2x+3{{x}^{2}}+4{{x}^{3}}+.......\infty \]
(ix) \[{{(1+x)}^{-3}}=1-3x+6{{x}^{2}}-...............\infty \]
(x) \[{{(1-x)}^{-3}}=1+3x+6{{x}^{2}}+.................\infty \]
Problems on approximation by the binomial theorem : We have \[{{(1+x)}^{n}}=1+nx+\frac{n(n-1)}{2!}{{x}^{2}}+.......\].
If \[x\] is small compared with 1, we find that the values of \[{{x}^{2}},{{x}^{3}},{{x}^{4}},.......\] become smaller and smaller.
\[\therefore \] The terms in the above expansion become smaller and smaller. If \[x\] is very small compared with 1, we might take 1 as a first approximation to the value of \[{{(1+x)}^{n}}\] or \[1+nx\] as a second approximation.
If \[n\] is positive integer and \[{{a}_{1}},\,{{a}_{2}},\,{{a}_{3}},\,....{{a}_{n}}\in C\], then
\[{{({{a}_{1}}+{{a}_{2}}+{{a}_{3}}+...+{{a}_{m}})}^{n}}=\sum{\frac{n!}{{{n}_{1}}!\,{{n}_{2}}!{{n}_{3}}!...{{n}_{m}}!}a_{1}^{{{n}_{1}}}.a_{2}^{{{n}_{2}}}}...a_{m}^{{{n}_{m}}}\],
where \[{{n}_{1}},\,{{n}_{2}},\,{{n}_{3}},.....{{n}_{m}}\] are all non-negative integers subject to the condition, \[{{n}_{1}}+{{n}_{2}}+{{n}_{3}}+.....{{n}_{m}}=n\].
(1) The coefficient of \[a_{1}^{{{n}_{1}}}.a_{2}^{{{n}_{2}}}.....a_{m}^{{{n}_{m}}}\] in the expansion of \[{{({{a}_{1}}+{{a}_{2}}+{{a}_{3}}+....{{a}_{m}})}^{n}}\] is \[\frac{n!}{{{n}_{1}}!{{n}_{2}}!{{n}_{3}}!....{{n}_{m}}!}\]
(2) The greatest coefficient in the expansion of
\[{{({{a}_{1}}+{{a}_{2}}+{{a}_{3}}+....{{a}_{m}})}^{n}}\] is \[\frac{n!}{{{(q!)}^{m-r}}{{[(q+1)!]}^{r}}}\]
where \[q\] is the quotient and \[r\] is the remainder when \[n\]is divided by \[m\].
(3) If \[n\] is \[+ve\] integer and \[{{a}_{1}},\,{{a}_{2}},.....{{a}_{m}}\in C\] \[a_{1}^{{{n}_{1}}}\,.\,a_{2}^{{{n}_{2}}}\,.........a_{m}^{{{n}_{m}}}\] then coefficient of \[{{x}^{r}}\] in the expansion of \[{{({{a}_{1}}+{{a}_{2}}x+.....{{a}_{m}}{{x}^{m-1}})}^{n}}\] is \[\sum{\frac{n!}{{{n}_{1}}!{{n}_{2}}!{{n}_{3}}!.....{{n}_{m}}!}}\]
where \[{{n}_{1}},\,{{n}_{2}},.....{{n}_{m}}\] are all non-negative integers subject to the condition:
\[{{n}_{1}}+{{n}_{2}}+.....{{n}_{m}}=n\] and \[{{n}_{2}}+2{{n}_{3}}+3{{n}_{4}}+....+(m-1){{n}_{m}}=r\]
(4) The number of distinct or dissimilar terms in the multinomial expansion \[{{({{a}_{1}}+{{a}_{2}}+{{a}_{3}}+....{{a}_{m}})}^{n}}\] is \[^{n+m-1}{{C}_{m-1}}\].
Current Affairs CategoriesArchive
Trending Current Affairs
You need to login to perform this action. |