# Solved papers for RAJASTHAN ­ PET Rajasthan PET Solved Paper-2005

### done Rajasthan PET Solved Paper-2005

• question_answer1) A body cools down from$80{}^\circ C$to$70{}^\circ C$in 6 min. The time taken to cool it from$60{}^\circ C$to$50{}^\circ C$will be

A) less than 6 min

B) 6 min

C) more than 6 min

D) None of the above

• question_answer2) At temperature$227{}^\circ C,$the power radiated by a body is$Q\text{ }cal/c{{m}^{^{2}}}$. At the temperature$727{}^\circ C$ the power radiated by it will be

A) 2Q

B) 4 Q

C) 16 Q

D) 32 Q

• question_answer3) A train of mass$5\times {{10}^{6}}$kg is moving with velocity 72 km/s. If it is sloped by applying break, then the value of heat generated will be

A) $1.2\times {{10}^{5}}k-cal$

B) $2.4\times {{10}^{5}}k-cal$

C) $4.8\times {{10}^{5}}k-cal$

D) $6\times {{10}^{5}}k-cal$

• question_answer4) For a gas, if ratio of specific heat is 7. If gas constant is R, then the value of specific heat at constant volume will be

A) $\frac{R}{(\gamma -1)}$

B) $\frac{R}{\gamma +1}$

C) $\frac{R}{\gamma }$

D) $R(\gamma -1)$

• question_answer5) The value of critical temperature in terms of van der Waal's constant a and b is

A) $1.2\,\times \,{{10}^{5}}k-cal$

B) $2.4\,\times \,{{10}^{5}}k-cal$

C) $4.8\,\times \,{{10}^{5}}k-cal$

D) $6\,\times \,{{10}^{5}}k-cal$

• question_answer6) The surface tension of a soap solution is$2\times {{10}^{-2}}$N/m. To blow a bubble of radius 2 cm from 1 cm, the work done is

A) $1.5\pi \times {{10}^{-4}}J$

B) $1.2\pi \times {{10}^{-4}}J$

C) $0.3\pi \times {{10}^{-4}}J$

D) $0.6\pi \times {{10}^{-4}}J$

• question_answer7) A second pendulum is taken in a satellite moving at a height of 2R from the earth's surface. At that position the time period (in second) of pendulum will be

A) 0

B) 2

C) 4

D) $\infty$

• question_answer8) A space shuttle of mass 2500 kg is projected outside the gravitational field of the earth in space. The radius of earth is 6400 km. The minimum initial velocity of the shutle should be

A) 5.6 km/s

B) 7.25 km/s

C) 8.5 km/s

D) 11.2 km/s

• question_answer9) Where can a geostationary sattelite be placed?

A) Above the city at equatorial

B) Above the north pole or south pole

C) In the orbit making$23.5{}^\circ$with equatorial plane

D) In the orbit making$66.5{}^\circ$with equatorial plane

• question_answer10) $n$ bullets of each of mass m hits the surface with velocity $u$. The force feet by surface will be

A) $mnu$

B) $2\text{ }mnu$

C) $4\text{ }mnu$

D) $zero$

• question_answer11) A particle is vibrating in a simple harmonic motion with an amplitude of 4 cm. At what displacement from the equilibrium position, its energy half potential and half kinetic?

A) $2\sqrt{2}\,cm$

B) $2\,cm$

C) $\sqrt{2}$

D) $\frac{3}{\sqrt{2}}cm$

• question_answer12) Inertia of a thin rod of mass M and length L about an axis making an angle$90{}^\circ$with its length is $\frac{M{{L}^{2}}}{9}.$ The distance of this axis from the midpoint of rod will be

A) $\frac{L}{6}$

B) $\frac{L}{3}$

C) $\frac{L}{4}$

D) $\frac{L}{2}$

• question_answer13) A ball at angle$30{}^\circ$with velocity v0 through in the vertically direction. Which statement will be true?

A) Gravitational potential energy at maximum height of projectile path will be minimum

B) The kinetic energy of ball at maximum height of projectile path will be zero

C) The horizontal component of momentum will not change

D) The vertical component of momentum will not change

• question_answer14) A body is rotating with angular velocity$\overrightarrow{\omega }$and its angular momentum is L, then relation between T and L will be

A) $\overset{\to }{\mathop{T}}\,=\,{{\omega }^{\to }}\times {{L}^{\to }}$

B) ${{L}^{\to }}=L\frac{\,\,\,{{\omega }^{\to }}}{dt}$

C) ${{T}^{\to }}={{\omega }^{\to }}\frac{\,\,\,d{{L}^{\to }}}{dt}$

D) ${{T}^{\to }}=\frac{\,\,\,d{{L}^{\to }}}{dt}$

• question_answer15) Two masses of 4 kg and 5 kg are connected by a string passing through a frictionless pulley and are kept on a frictionless table as shown in the figure. The acceleration of 5 kg mass is A) $49\text{ }m/{{s}^{2}}$

B) $5.44m/{{s}^{2}}$

C) $19.5\text{ }m/{{s}^{2}}$

D) $2.72\text{ }m/{{s}^{2}}$

• question_answer16) The maximum angular displacement of simple pendulum of length$l$is$\theta .$ Its maximum kinetic energy will be

A) $mgl\text{ }sin\theta$

B) $mgl\text{ }(1+sin\theta )$)

C) $mgl(1+cos\theta )$

D) $mgl\text{ }(1-\cos \theta )$

• question_answer17) The height of water raised in capillary tube will be

A) maximum at$4{}^\circ C$

B) maximum at $0{}^\circ C$

C) minimum at$4{}^\circ C$

D) minimum at$0{}^\circ C$

• question_answer18) The two gases${{O}_{2}}$and${{H}_{2}}$have same temperature at TK. Mean kinetic energy of molecules of${{O}_{2}}$ compare to mean kinetic energy of molecule of${{H}_{2}}$will be

A) 16 times

B) 8 times

C) equal

D) 1/6 times

• question_answer19) The relation between relative change of volume $\left( \frac{\Delta V}{V} \right)$ and relative change of pressure $\left( \frac{\Delta p}{p} \right)$ in adiabatic process is

A) $\frac{1}{\gamma }\left( \frac{\Delta V}{V} \right)$

B) $\frac{1}{{{\gamma }^{2}}}\left( \frac{\Delta V}{V} \right)$

C) $-\gamma \left( \frac{\Delta V}{V} \right)$

D) $\gamma \left( \frac{\Delta V}{V} \right)$

• question_answer20) An iron nail of 200 g is fitted in a wood piece with a speed of 50 m/s by a hammer of 1 kg. If specific heat of iron is$0.105\text{ }cal/g{}^\circ C$and half of the total energy given to nail is transfered in heat, then what will be the rise in temperature of nail?

A) $1.42{}^\circ C$

B) $9.2{}^\circ C$

C) $10.5{}^\circ C$

D) $12.1{}^\circ C$

• question_answer21) There is a rough black spot on a polished metal plate. If the plate in heated up to$1400{}^\circ C$and taken in a dark room, then what will be the rise in temperature

A) the spot will be brighter as compared to remaining part of plat.

B) spot and remaining part of the plate will be equally bright

C) Neither spot nor the remaining part of the plate will be bright

D) the spot is less bright, as compared to remaining part of the plate

• question_answer22) The force due to surface tension of a capillary tube filled with water is balanced by the force of $72\times {{10}^{-5}}$N worked toward the base due to weight of water. The surface tension of water is 0.06 N/m. The internal radius of capillary tube will be will be

A) 0.5 mm

B) 2 mm

C) 1.1 mm

D) 1.75 mm

• question_answer23) The mass and radius of a planet have half the value of corresponding parameter of earth. Acceleration due to gravity on the surface the planet is

A) $4.9\text{ }m/{{s}^{2}}$

B) $9.8\text{ }m/{{s}^{2}}$

C) $19.6\text{ }m/{{s}^{2}}$

D) zero

• question_answer24) The time period of satellites nearing the planet of radius R is T. Find the time period of nearest satellite for planet of radius 3R.

A) $3\sqrt{3}\,T$

B) $\frac{\sqrt{3}}{2}\,T$

C) $\frac{1}{3\sqrt{3}}\,T$

D) $\frac{3}{2}T$

• question_answer25) A body of mass m is taken from earth surface to the height A equal to radius of earth, the increase in potential energy will be

A) $\frac{mgR}{2}$

B) $mgR$

C) $2mgR$

D) $\frac{1}{4}mgR$

• question_answer26) When a mass 5 kg attached to a spring, it normally extends by 12 cm. If the weighted spring oscillates, then its time period will be

A) 0.7 s

B) 0.9 s

C) 1.1 s

D) 1.4 s

• question_answer27) The average kinetic energy of helium atom at$30{}^\circ C$will be

A) 13.6 eV

B) 59.60 eV

C) 15 keV

D) less from 1 eV

• question_answer28) Star A has radius r, surface temperature T while star B has radius 4r and surface $\frac{T}{2}$ temperature. The ratio of radiated power ${{P}_{A}}\,:\,{{P}_{B}}$from, then will be

A) 1 : 4

B) 16 : 1

C) 1 : 16

D) 1 : 1

• question_answer29) A thin circular ring of mass M and radius r is rotating about its axis with a constant angular velocity $\omega$. Two objects each of mass m, are kept gently to the opposite ends of two perpendicular diameter of the ring. The angular velocity of the ring will be

A) $\frac{M\omega }{2m}$

B) $\frac{2M\omega }{M}$

C) $\frac{(M+2m)}{M}\omega$

D) $\left( \frac{M\omega }{M+2\omega } \right)$

• question_answer30) A fan of moment of inertia$0.6\text{ }kg-{{m}^{2}}$is turned upto a working speed of 0.5 rev/s. The angular momentum of the fan is

A) $0.3\pi \,kg-{{m}^{2}}/s$

B) $0.6\pi \,kg-{{m}^{2}}/s$

C) $\frac{0.03}{\pi }\,kg-{{m}^{2}}/s$

D) $\frac{0.6}{\pi }\,kg-{{m}^{2}}/s$

• question_answer31) In an AC circuit L is 0.5 H and C is 8$\mu$F. In circuit for maximum current, angular frequency will be

• question_answer32) When 4 A current flows in a motor, the power loss in 20 W and the resultant potential difference is 220 V, emf will be

A) 220 V

B) 225 V

C) 240 V

D) 260 V

• question_answer33) A step up transformer operates on a 230 V line and supplies a load of 2 A. The ratio of the primary and secondary winding is 1 : 25. The current in the primary is

A) 50 A

B) 25 A

C) 12.5 A

D) 6.25 A

• question_answer34) The magnetic field at the rate of 0.4 T/s changes in perpendicular direction from square coil of an arm 4 cm. If the resistance of coil is $2\times {{10}^{-3}}\Omega ,$ then induced current will be

A) 0.16 A

B) 0.32 A

C) 3.2 A

D) 1.6 A

• question_answer35) A magnet has length 0.2 m and its placed at angle $30{}^\circ$in magnetic field of$30\text{ }Wb/{{m}^{2}}$

A) $7.5\times {{10}^{-4}}N-m$

B) $3.0\times {{10}^{-4}}N-m$

C) $1.5\times {{10}^{-4}}N-m$

D) $6.0\times {{10}^{-4}}N-m$

• question_answer36) The atomic mass of ionic lithium atoms are 0.06 amu. If they are motion with energy 400 eV in magnetic field of 0.08 T, then radius of circular path will be

A) 8.83 cm

B) 9.23 cm

C) 10.5 cm

D) 11.25 cm

• question_answer37) In Young's double slit experiment, distance between two sources is 0.1 mm. The distance of screen from the sources is 20 cm. Wavelength of light used is 5460$\overset{o}{\mathop{\text{A}}}\,$. The distance between maxima will be

A) 0.5 mm

B) 1.1 mm

C) 1.5 mm

D) 2.2 mm

• question_answer38) The ratio of gravitational and electric forces between two electrons.

A) ${{10}^{-36}}$

B) ${{10}^{-39}}$

C) ${{10}^{-42}}$

D) ${{10}^{-47}}$

• question_answer39) Two charges $4q$ and $q$ are placed at distance$l$. In the middle adjoining line a charge$Q$is kept. If resultant force on $q$ will be zero, then $Q$ will be

A) $+q$

B) $-q$

C) $+2q$

D) $-2g$

• question_answer40) Suppose the electrical potential at any point is V, then electric field at that point along$x-$axis will be

A) ${{\int }^{\infty }}{{\,}_{0}}V\,dt$

B) $\frac{dV}{dx}$

C) $-\frac{dV}{dx}$

D) $-V\frac{dV}{dx}$

• question_answer41) The magnitude of charges in an electric dipole are $3.2\times {{10}^{-19}}C$and the distance between them is 2.4$\overset{o}{\mathop{\text{A}}}\,$. If its placed at the electric field of intensity $4\times {{10}^{5}}$V/m, then the electric dipole moment will be

A) $9.6\times {{10}^{-5}}C-m$

B) $12.8\times {{10}^{-14}}C-m$

C) $7.68\times {{10}^{-29}}C-m$

D) $30\times {{10}^{-24}}C-m$

• question_answer42) A helium nucleus makes a full rotation in a circle of radius 0.8 m in 2s. The value of the magnetic field at the centre of the circle will be

A) ${{\mu }_{0}}\,\times \,{{10}^{-19}}\,T$

B) $1.6\,\times {{\mu }_{0}}\,\times \,{{10}^{-19}}\,T$

C) $3{{\mu }_{0}}\,\times \,{{10}^{-19}}\,T$

D) $2{{\mu }_{0}}\,\times \,{{10}^{-19}}\,T$

• question_answer43) A sinusoidal voltage of peak value 200 V is connected to a diode and capacitance C in the circuit shown, so that half wave rectification occurs. A) 500 V

B) 200 V

C) 283 V

D) 141 V

• question_answer44) The ratio of energies of photon of wavelength 6000$\overset{o}{\mathop{\text{A}}}\,$ to wavelength 4000$\overset{o}{\mathop{\text{A}}}\,$

A) 2 : 3

B) 3 : 2

C) 1 : 5

D) 5 : 1

• question_answer45) The third harmonic of a closed organ pipe is in resonance with the fourth overtone of open organ pipe. The ratio of lengths of the pipes is

A) $\frac{8}{7}$

B) $\frac{7}{8}$

C) $\frac{3}{5}$

D) $\frac{5}{3}$

• question_answer46) Two coherent monochromatic light beam of intensities $I$ and $4I$ are superposed. The maximum and minimum possible intensities in the resulting beam are

A) $3I$ and $2I$

B) $25I\text{ }and\text{ }9I$

C) $9I\text{ }and\,I$

D) $5I\text{ }and\text{ }3I$

• question_answer47) Two steady sound sources having same frequency are placed at a distance of 1 m. An observer is moving at a distance of 10 m along the line joining there source. If the observed distance between first two successive maxima is 0.11 m, then frequency of sources is (velocity of sound v = 330 m/s.)

A) 1000 Hz

B) 3000 Hz

C) 3500 Hz

D) 4000 Hz

• question_answer48) A car moving with a speed of 28 m/s and blowing the horn of 500 Hz frequency waves another car moving at 15 m/s. What will be the observed frequency is the dimer of second car? (speed of sound = 332 m/s)

A) 480 Hz

B) 500 Hz

C) 520 Hz

D) 580 Hz

• question_answer49) The average emf induced in a coil in which current changes from 2 A to 4 A in 0.05 s is 8 V. What is the self inductance of the coil?

A) 0.5 H

B) 0.35 H

C) 0.2 H

D) 2 mH

• question_answer50) In a potential meter, a voltage source and battery of 3 V are balance at length 60cm length 45 cm respectively. The emf unknown voltage will be

A) 3 V

B) 4 V

C) 4.5 V

D) 6 V

• question_answer51) The square coil of turn 60 has length 20 cm and breath 10 cm is rotating rate of 1800 rev/min in uniform magnetic field of intensity 0.5 T. the maximum emf of coil will be

A) 98 V

B) 110 V

C) 113 V

D) 118 V

• question_answer52) The number of turn in the primary coil of a transformer is 240. For an input of alternating voltage 20 V, output voltage is 2.5 V. 7 number of turns in the secondary coil is

A) 250

B) 100

C) 10

D) 30

• question_answer53) A light wave is moving along y-axis. If $E\to$ at a time along the x-axis, then direction of $B\to$ at that time will along

A) $y-$axis

B) $x-$axis

C) $\text{+ }z-$axis

D) $-\text{ }z-$axis

• question_answer54) The current of an AC circuit is $I=2\text{ }cos$ $(\omega t\,+\,\theta ),$then${{I}_{rms}}$

A) $\sqrt{2}A$

B) $\frac{1}{\sqrt{2}}\,A$

C) $2A$

D) $\frac{1}{2}\,A$

• question_answer55) The intensity of magnetic field of a current carrying circular at a point on its axis at distance $x(x>>R)$will depends upon

A) $B\alpha \frac{1}{{{x}^{3/2}}}$

B) $B\alpha \frac{1}{{{x}^{2}}}$

C) $B\alpha \frac{1}{{{x}^{3}}}$

D) $B\alpha \frac{1}{{{x}^{1/2}}}$

• question_answer56) A given charge is situated at a certain distance from an electric dipole in the end on position experience a force F. If the distance of the charge is doubled, the force acting on the charge will be

A) zero

B) $F/2$

C) $F/4$

D) $F/8$

• question_answer57) In dielectric medium, the electric field is $E\to$. If permittivity of vacuum is ${{\varepsilon }_{0}},$then

A) $\frac{kE\to }{{{\varepsilon }_{0}}}$

B) $\frac{E\to }{K{{\varepsilon }_{0}}}$

C) $\frac{{{\varepsilon }_{0}}E\to }{k}$

D) $k{{\varepsilon }_{0}}E\to$

• question_answer58) The work done to complete one revolution in a circle of radius r by a charge Q, if a charge Q is placed at the centre of the circle will be

A) $\frac{Q}{4\pi {{\varepsilon }_{0}}r}$

B) $\frac{{{Q}^{2}}al}{4\pi {{\varepsilon }_{0}}r}$

C) zero

D) $\frac{Qal}{2r}$

• question_answer59) Two mirror are bended on each other in such a manner that the incident ray on first mirror, parallel to the second mirror, becomes parallel to first mirror by reflection through second mirror, then the angle between the two mirrors is

A) $30{}^\circ$

B) $45{}^\circ$

C) $60{}^\circ$

D) $75{}^\circ$

• question_answer60) The energy for ion on of a excited hydrogen atom is

A) 13.6

B) 3.4

C) more than 13.6

D) None of these

• question_answer61) The thickness of glass strip is t and refractive index n. If velocity of light in vacuum is c, then minimum time in cross the strip by light will be

A) $\frac{ct}{n}$

B) $\frac{nt}{c}$

C) $nct$

D) $\frac{nc}{t}$

• question_answer62) Some point in progressive waves are

A) not remain at rest

B) always move

C) in each cycle two times at rest at the same time

D) in each cycle one time at rest at the same time

• question_answer63) One end closed pipe of length L resonented at any frequency. The length of open both ends pipe, for resonant at same frequency will be

A) L/2

B) L

C) 3L/2

D) 2L

• question_answer64) The frequency of Piano of length 1.1 m and of mass 160 g is 33 Hz, the tension will be

A) 556 N

B) 3000 N

C) 843 N

D) 995 N

• question_answer65) A tuning forks gives 5 beats/s with 20 cm length of sonometer. If length of wire changes from 20 to 21, and not change in frequency, then frequency of tuning forks will be

A) 205 Hz

B) 210 Hz

C) 220 Hz

D) 195 Hz

• question_answer66) When semiconductor makes from Germanium doped by phosphorus, then in semiconductor

A) quantity of negative electric charge will be maximum

B) electrons will be maximum

C) quantity of positive electric charge will be maximum

D) holes will be maximum

• question_answer67) Two coils have a same centre, when the mutual inductance of both coil will be maximum, then axis of both will

A) perpendicular

B) make an angle$45{}^\circ$

C) make an angle$60{}^\circ$

D) parallel

• question_answer68) In insulator, energy interval of low order is

A) zero

B) 0.7 eV

C) 1.1 eV

D) 5 eV

• question_answer69) In triode 8 amplifier voltage gain depends upon

A) $\mu ,\,{{R}_{L}}\,and\,input\,voltage$

B) ${{R}_{p}},{{R}_{L}}$and$\mu$

C) $\mu ,{{R}_{p}}$and input voltage

D) ${{R}_{p}},\mu$and${{g}_{m}}$

• question_answer70) In hydrogen atom, the kinetic energy of moving electron in Bhor orbit of radius r will be

A) $Ke/2r$

B) $\frac{K{{e}^{2}}}{2r}$

C) $Ke/r$

D) $2Ke/4$

• question_answer71) A hydrogen atom is in first excited state, then ion energy will be

A) 13.1 eV

B) 3.4 eV

C) 1.51 eV

D) 1.9 eV

• question_answer72) An electron and positron have the same rest mass of 0.51 MeV. Find the wavelength of $\gamma$ rays produced due to their fusion

A) 6.012$\overset{o}{\mathop{\text{A}}}\,$

B) 0.024$\overset{o}{\mathop{\text{A}}}\,$

C) 0.012 to$\overset{o}{\mathop{\text{A}}}\,$

D) 0.024 to$\overset{o}{\mathop{\text{A}}}\,$

• question_answer73) Crod makes of soft iron in electromagnet, because its

A) diathesis and retantivity are maximum

B) diathesis is maximum and retantivity is minimum

C) diathesis and retantivity are minimum

D) retantivity is maximum and diathesis is minimum

• question_answer74) A converging lens is used to form an image on a screen. When half of the lens is covered by opaque screen.

A) Half the image will disappear

B) Upper half the image will disappear

C) Complete image will be formed of decreased intensity

D) Complete image will disappear

• question_answer75) In an X-rays tube, the electron accelerated by potential V volt, the minimum wavelength of X-rays will be

A) $\frac{2400}{V}$$\overset{o}{\mathop{\text{A}}}\,$

B) $\frac{12400}{V}$$\overset{o}{\mathop{\text{A}}}\,$

C) $\frac{12.4}{V}$$\overset{o}{\mathop{\text{A}}}\,$

D) $\frac{V}{124000}$$\overset{o}{\mathop{\text{A}}}\,$

• question_answer76) The atomic weight of boran is 10.81 and it has two isotopes $_{5}{{\beta }^{10}}$ and $_{5}{{\beta }^{11}}$. Then ratio of $_{5}{{\beta }^{10}}$: $_{5}{{\beta }^{11}}$ in nature would be

A) 19 : 81

B) 10 : 11

C) 15 : 61

D) 81 : 19

• question_answer77) A galvanometer of$10\,\Omega$resistance gives full scale deflection with 0.01 A of current. It is to be converted into an ammeter for measuring 10 A current. The value of shunt resistance will be

A) $11\,\Omega$resistance in series

B) 100 resistance in series

C) 990$\Omega$ resistance in series

D) 0.10$\Omega$ resistance in series

• question_answer78) Half year of a radioactive element is 5 days. The time during which quantity remains 7/8 of initial mass will be

A) 2, 5 days

B) 5 days

C) 10 days

D) 15 days

• question_answer79) When a choke coil of resistance zero works at 200 V, then the 5 mA current flows its. The power in choke coil is

A) zero

B) 11 W

C) $44\times {{10}^{3}}W$

D) 1.1 W

• question_answer80) The below diagram shows a parabola. Its physical quantities and y at constant acceleration represent respectively A) X = time, Y = velocity

B) X = time, Y = displacement

C) X = time, Y = acceleration

D) X = velocity, Y = displacement

• question_answer81) The chemical equivalent of silver is 108. If the current in silver voltameter is 2 A; then the during time in collecting of 27 g silver will be

A) 8.75 h

B) 6.70 h

C) 3.35 h

D) 12.50 h

• question_answer82) The reactance of a coil at frequency 50 Hz is 1000, the reactance at frequency 100 Hz will be

A) 100$\Omega$

B) 300$\Omega$

C) 450$\Omega$

D) 600$\Omega$

• question_answer83) For iron magnet materials

A) permeability is high and tendency is positive and low

B) permeability is very high and tendency is negative and low

C) permeability is very low and tendency is positive and high

D) permeability is very low and tendency is negative and low

• question_answer84) The magnetic susceptibility of any paramagnetic material changes with absolute temperature T as

A) $\chi \,\alpha \,T$

B) $\chi \,\alpha \,\frac{1}{T}$

C) $\chi \,\alpha \,\frac{1}{(1-T)}$

D) constant

• question_answer85) The grid voltage of any triode valve is changed from$-2.5\text{ }V$to$-4.5\text{ }V$and the mutual conductance is$8\times {{10}^{-4}}$mho. The change in plate circuit current will be

A) $1.6\times {{10}^{-3}}A$

B) $2.0\times {{10}^{-4}}A$

C) $1.6\times {{10}^{-3}}A$

D) $1.6\times {{10}^{-4}}A$

• question_answer86) To obtain a P-type germanium semiconductor, it must be doped with

A) boran

B) antimany

C) arsenic

D) phosphorus

• question_answer87) In a triode amplifier,$\mu =25,$${{r}_{p}}=40\text{ }k\Omega$ and load resistance${{R}_{L}}=10\text{ }k\Omega$. If the input signal voltage is 0.5 V, then output signal voltage will be

A) 1.25 V

B) 2.5 V

C) 5 V

D) 10 V

• question_answer88) The radius of the coil of a tangent galvanometer which has 10 turn is 0.1 m. The current required to produce a deflection of $60{}^\circ$ is

A) $3A$

B) $1.1A$

C) $2.1A$

D) $1.5A~$

• question_answer89) The atomic weight of thorium is 232 and atomic no Z = 90. Disintegration of thorium finally gives Pb for which A = 208 and Z = 82. For this process the number of $\alpha$ and$\beta$ particles respectively are

A) 4 and 6

B) 6 and 4

C) 3 and 2

D) 2 and 3

• question_answer90) The work function of metal is 2.4 eV. The maximum wavelength of photon for emitted the electric light will be

A) 3000$\overset{o}{\mathop{\text{A}}}\,$

B) 3500 $\overset{o}{\mathop{\text{A}}}\,$

C) 4500 $\overset{o}{\mathop{\text{A}}}\,$

D) 5156 $\overset{o}{\mathop{\text{A}}}\,$

• question_answer91) The ratio of ioning power of$\alpha$and$\beta$particle emitted from a radioactive element will be

A) 1 : 100

B) 100 : 1

C) 1000 : 1

D) 1 : 1000

• question_answer92) The momentum of X-ray photon of wavelength 0.01$\overset{o}{\mathop{\text{A}}}\,$in kg-m/s will be

A) $6.6\times {{10}^{-21}}$

B) $6.6\times {{10}^{-32}}$

C) $6.6\times {{10}^{-46}}$

D) $6.6\times {{10}^{-22}}$

• question_answer93) The minimum wavelength of X-rays achive from the$\alpha -$ray tube is 0.1 A. The maximum voltage

A) $1.25\times {{10}^{3}}V$

B) $1.24\times {{10}^{4}}V$

C) $1.24\times {{10}^{5}}V$

D) $1.24\times {{10}^{6}}V$

• question_answer94) An electron is accelerated through a potential of 50000 V. Its de-Broglie wavelength of electron will be

A) 0.55$\overset{o}{\mathop{\text{A}}}\,$

B) 0.055$\overset{o}{\mathop{\text{A}}}\,$

C) 0.077$\overset{o}{\mathop{\text{A}}}\,$

D) 0.095$\overset{o}{\mathop{\text{A}}}\,$

• question_answer95) The wavelength of second line of Lyman series is 1025$\overset{o}{\mathop{\text{A}}}\,$. The wavelength of first line will be

A) 825$\overset{o}{\mathop{\text{A}}}\,$

B) 900$\overset{o}{\mathop{\text{A}}}\,$

C) 1215$\overset{o}{\mathop{\text{A}}}\,$

D) 1325$\overset{o}{\mathop{\text{A}}}\,$

• question_answer96) In hydrogen atom, the momentum of electron in second orbit of radius r will be

A) $\frac{h}{2\pi }$

B) $\frac{h}{\pi }$

C) $\frac{h}{\pi r}$

D) $\frac{h}{2\pi r}$

• question_answer97) An electric heater of resistance 70, heats 0.1 kg of water of$20{}^\circ C$for 3 min. If it carries a current of 4 A, then what will be the final temperature (specific heat of water$=4.2\times {{10}^{3}}J/kg\text{ }K$)

A) $28{}^\circ C$

B) $48{}^\circ C$

C) $52{}^\circ C$

D) $68{}^\circ C$

• question_answer98) In LCR circuit having C = 25$\mu$F, L = 02 H and R = 25$\Omega$. If a generator of E = 320 sin 314 t volt is connect in the circuit, then impedence will be

A) 57.320$\Omega$

B) 79.480$\Omega$

C) 89.50$\Omega$

D) 99.10$\Omega$

• question_answer99) In question 98, how much inductance is added the circuit so that reactance becomes minimum?

A) 0.31 H

B) 0.41 H

C) 1.25 H

D) 1.75 H

• question_answer100) In a circuit the current is given by$I={{l}_{0}}sin$ $(\omega t-\pi /2)$and the potential is$V={{V}_{0}}sin$ at, then

A) $\frac{1}{2}{{I}_{0}}{{e}_{0}}\,watt$

B) ${{I}_{0}}{{\varepsilon }_{0}}\,watt$

C) ${{I}_{0}}\,watt$

D) $zero$

• question_answer101) Which of the following has minimum energy?

A) $\sigma$bond

B) $\pi$bond

C) ionic bond

D) hydrogen bond

• question_answer102) The addition of a reagent to an unsymmetric alkene take place in such a way that the negative part of the reagent will be attached to the carbon atom which containing lesser number of H-atom. This statement belongs to

A) Markownikoffs rule

B) Peroxide effect

C) Saytzeffs rule

D) Le-Chatelier's principle

• question_answer103) The atomic mass of two elements is same. There are 27 protons in first element and 30 protons in second element. If 30 neutrons are present in first element then neutron in second element will be

A) 27

B) 30

C) 29

D) 28

• question_answer104) Which of the following alcohol will form the most stable carbonium ion on dehydration?

A) $C{{H}_{3}}-\underset{\begin{smallmatrix} | \\ C{{H}_{3}} \end{smallmatrix}}{\mathop{CH}}\,-C{{H}_{2}}OH$

B) $C{{H}_{3}}-\underset{\begin{smallmatrix} | \\ C{{H}_{3}} \end{smallmatrix}}{\mathop{\overset{\begin{smallmatrix} C{{H}_{3}} \\ | \end{smallmatrix}}{\mathop{C}}\,}}\,-OH$

C) $C{{H}_{3}}-\underset{\begin{smallmatrix} | \\ OH \end{smallmatrix}}{\mathop{CH}}\,-C{{H}_{2}}C{{H}_{3}}$

D) $C{{H}_{3}}C{{H}_{2}}C{{H}_{2}}C{{H}_{2}}OH$

• question_answer105) Which of the following is strong reducing agent?

A) $Li$

B) $Na$

C) $Al$

D) $Zn$

• question_answer106) On moving top to bottom in a group

A) ionisation potential increases

B) electronegativity increases

C) oxidising strength increases

D) reducing strength increases

A) absolute alcohol$+C{{H}_{3}}OH$

B) absolute alcohol$+{{C}_{6}}{{H}_{5}}OH$

C) absolute alcohol + petrol + benzene

D) absolute alcohol$+C{{H}_{3}}COOH$

• question_answer108) Which of the following is the most stable ion?

A) $C{{H}_{3}}C{{H}_{2}}\overset{+}{\mathop{C}}\,{{H}_{2}}$

B) $C{{H}_{3}}-\overset{+}{\mathop{C}}\,H-C{{H}_{3}}$

C) ${{(C{{H}_{3}})}_{3}}{{C}^{+}}$

D) $\overset{+}{\mathop{C}}\,{{H}_{3}}$

• question_answer109) ${{N}_{2}}+3{{H}_{2}}2N{{H}_{3}}+22.4\,k\,cal$ What are the favourable condition for the formation of ammonia in the above reaction?

A) High temperature and low pressure

B) Low temperature and high pressure

C) High temperature and high pressure

D) Low temperature and low pressure

B) carbocation

C) carbonion

D) carbine

• question_answer111) $C{{H}_{3}}C{{H}_{2}}OH$and$C{{H}_{3}}-O-C{{H}_{3}}$is

A) position isomers

B) functional isomers

C) chain isomers

D) geometrical isomers

• question_answer112) The IUPAC name of $C{{H}_{3}}-C{{H}_{2}}-\underset{\begin{smallmatrix} | \\ C{{H}_{2}}-C{{H}_{2}}-C{{H}_{2}}-C{{H}_{3}} \end{smallmatrix}}{\overset{\begin{smallmatrix} C{{H}_{2}}-C{{H}_{3}} \\ | \end{smallmatrix}}{\mathop{C}}}\,-C{{H}_{3}}$

A) 3-ethyl-4-methyl hexane

B) 3-ethyl-3-methyl heptane

C) 5-methyl-5-ethyl heptane

D) 2-butyl-2-ethyl butane

• question_answer113) Alkaline$KMn{{O}_{4}}$is called

A) Tollen's reagent

B) Baeyefs reagent

C) Benedict solution

D) None of these

• question_answer114) Acidic hydrogen is present in:

A) $C{{H}_{3}}-C{{H}_{3}}$

B) $C{{H}_{3}}CH=C{{H}_{2}}$

C) $C{{H}_{3}}-CH=CH-C{{H}_{3}}$

D) $C{{H}_{3}}-C=CH$

• question_answer115) The dipole moment of$CC{{l}_{4}}$is zero. It is due to:

A) planar structure

B) tetrahedral structure

C) same size of C and$Cl$atoms

D) same electron affinity of C and$Cl$atoms

• question_answer116) What will obtain on adding 50%$NaOH$in bauxite?

A) $Al$

B) $Al{{(OH)}_{3}}$

C) $NaAl{{O}_{2}}$

D) $Fe$

• question_answer117) Which is deviated from Aufbau's principle?

A) B) C) D) • question_answer118) $C{{H}_{3}}-C\equiv CH+{{H}_{2}}O\xrightarrow[{}]{{{H}^{+}}/H{{g}^{2+}}}X,$Compound X, is

A) $C{{H}_{3}}C{{H}_{2}}CHO$

B) $C{{H}_{3}}C{{H}_{2}}COOH$

C) $C{{H}_{3}}COC{{H}_{3}}$

D) $C{{H}_{3}}-CH=C{{H}_{2}}$

• question_answer119) $X+CHC{{l}_{3}}+3KOH\xrightarrow[{}]{{}}Y$ Y is a abnoxious odour compound. The compound X, is

A) $C{{H}_{3}}CON{{H}_{2}}$

B) $C{{H}_{3}}N{{H}_{2}}$

C) $C{{H}_{3}}OH$

D) $C{{H}_{3}}Cl$

• question_answer120) The pH of solution which obtains on adding 10 mL 0.2 M$NaOH$solution with 10 mL 0.1 M ${{H}_{2}}S{{O}_{4}}$will be

A) zero

B) 2.0

C) 4.0

D) 7.0

• question_answer121) The shape of electron cloud is determined by

A) principal quantum number

B) azimuthal quantum number

C) spin quantum number

D) All of the above

• question_answer122) The oxidation number of Cr in${{K}_{2}}Cr{{O}_{4}}$is

A) +3

B) $-3$

C) +6

D) $-6$

• question_answer123) Which of the following compound contains both ionic and covalent bond?

A) ${{H}_{2}}O$

B) $S{{O}_{2}}$

C) $N{{H}_{4}}Cl$

D) $N{{H}_{3}}$

• question_answer124) On moving left to right in a period, the electropositive character

A) increases

B) decreases

C) first increases then decreases

D) first decreases then increases

• question_answer125) Bond angle and bond length in benzene are

A) $120{}^\circ$and 1.34$\overset{o}{\mathop{\text{A}}}\,$

B) $120{}^\circ$and 1.39$\overset{o}{\mathop{\text{A}}}\,$

C) $180{}^\circ$and 1.33$\overset{o}{\mathop{\text{A}}}\,$

D) $120{}^\circ$ and 1.54$\overset{o}{\mathop{\text{A}}}\,$

• question_answer126) The atomic number of a element is 33. It belongs to

A) third period and IVA group

B) fourth period and IIIA group

C) fourth period and VA group

D) third period and VA group

• question_answer127) Which of the following compound is used as both oxidant and reductant?

A) $NaOH$

B) ${{K}_{2}}C{{r}_{2}}{{O}_{7}}$

C) ${{H}_{2}}{{O}_{2}}$

D) ${{H}_{2}}S{{O}_{4}}$

• question_answer128) ${{(C{{H}_{3}}CO)}_{2}}O+HCl\xrightarrow[{}]{{}}X+C{{H}_{3}}COOH$ Compound X, will be

A) $C{{H}_{3}}Cl$

B) $C{{H}_{3}}COCl$

C) $C{{H}_{3}}COC{{H}_{3}}$

D) None of these

• question_answer129) Which of the following is diamagnetic?

A) ${{O}_{2}}$

B) $NO$

C) ${{O}_{2}}$

D) ${{F}_{2}}$

A) $C{{l}^{-}}$

B) $B{{F}_{3}}$

C) $N{{H}_{3}}$

D) $NO_{2}^{-}$

• question_answer131) The above reaction is called

A) Gattermann reaction

B) Schmidt reaction

C) Schotten-Baumann reaction

D) Friedel-Craft's reaction

• question_answer132) Malachite is the ore of which metal?

A) $Fe$

B) $Cu$

C) $Al$

D) $Ag$

• question_answer133) Alkyl halide reacts with alcoholic KOH to give

A) alcohol

B) alkene

C) alkane

D) aldehyde

• question_answer134) The concentration of pyrite ore is done by which method

A) calcination

B) roasting

C) froth floatation

D) gravity separation

• question_answer135) Which of the following reaction will not happen?

A) $Fe+{{H}_{2}}S{{O}_{4}}\xrightarrow[{}]{{}}FeS{{O}_{4}}+{{H}_{2}}$

B) $Cu+2AgN{{O}_{3}}\xrightarrow[{}]{{}}Cu{{(N{{O}_{3}})}_{2}}+2Ag$

C) $2KBr+{{I}_{2}}\xrightarrow[{}]{{}}2KI+B{{r}_{2}}$

D) $CuO+{{H}_{2}}\xrightarrow[{}]{{}}Cu+{{H}_{2}}O$

• question_answer136) $SnC{{l}_{4}}+2FeC{{l}_{2}}\xrightarrow[{}]{{}}SnC{{l}_{2}}+2FeC{{l}_{3}}$ In this reaction, oxidising agent and reducing agent are respectively

A) $SnC{{l}_{2}}$and $FeC{{l}_{3}}$

B) $FeC{{l}_{3}}$and$SnC{{l}_{4}}$

C) $FeC{{l}_{2}}$ and $SnC{{l}_{4}}$

D) $SnC{{l}_{4}}$and $FeC{{l}_{3}}$

• question_answer137) The molecular weight of ethyl alcohol and dimethyl ether are equal but the boiling point of ethyl alcohol is greater than dimethyl ether. It is due to

A) ether is insoluble in water

B) methyl group is attached to oxygen in ether

C) the dipole moment of ethanol is greater

D) ethanol has H-bond

• question_answer138) Which of the following gives iodoform test and Fehling test?

A) $HCHO$

B) $C{{H}_{3}}COC{{H}_{3}}$

C) $C{{H}_{3}}CHO$

D) $C{{H}_{3}}C{{H}_{2}}OH$

• question_answer139) $C{{H}_{3}}COO{{C}_{2}}{{H}_{5}}+C{{H}_{3}}COO{{C}_{2}}{{H}_{5}}\xrightarrow[{}]{{}}$ $C{{H}_{3}}COC{{H}_{2}}COO{{C}_{2}}{{H}_{5}}+{{C}_{2}}{{H}_{5}}OH$ This reaction is called

A) Esterification

B) Claisen condensation

C) Williamson's synthesis

D) Trans-esterification

• question_answer140) Which is correct for 2p-orbital?

A) $n=1,l=2$

B) $n=2,l=1$

C) $n=1,l=0$

D) $n=2,l=0$

A) s-block

B) p-block

C) d-block

D) $f-$block

• question_answer142) $C{{H}_{3}}MgI+C{{O}_{2}}\xrightarrow[{}]{{}}X\xrightarrow[{}]{{{H}_{2}}O}Y$ Compound Y, is

A) $C{{H}_{3}}OH$

B) $C{{H}_{3}}COOH$

C) $C{{H}_{3}}C{{H}_{2}}OH$

D) $C{{H}_{3}}CHO$

• question_answer143) Which of the following compound obtains on the reaction of formaldehyde with$C{{H}_{3}}MgX$?

A) $C{{H}_{3}}CHO$

B) $C{{H}_{3}}C{{H}_{2}}OH$

C) $HCOOH$

D) $C{{H}_{3}}COOH$

• question_answer144) Which of the following is not soluble in cone. ${{H}_{2}}S{{O}_{4}}$?

A) $n-$hexane

B) hexene

C) benzene

D) ethanol

• question_answer145) Conjugated base of$C{{H}_{2}}C{{l}_{2}}$is

A) $C{{O}_{2}}$

B) ${{H}_{2}}C{{O}_{3}}$

C) ${{H}_{2}}O$

D) $CO_{3}^{2-}$

• question_answer146) Ethylene can obtained by the electrolysis of

A) potassium fumarate

B) potassium succinate

C) potassium maleate

D) potassium formate

• question_answer147) The electronic configuration of-alkaline earth metal is

A) $n{{s}^{1}}$

B) $n{{s}^{2}}$

C) $n{{p}^{6}}$

D) $n{{s}^{2}}(n-1){{d}^{10}}$

• question_answer148) The oxidation number of C-atom in$C{{H}_{2}}C{{l}_{2}}$and$CC{{l}_{4}}$is respectively

A) zero and 4

B) zero and -4

C) 2 and 4

D) -2 and -4

• question_answer149) $C{{H}_{3}}-O-{{C}_{3}}{{H}_{7}}$and${{C}_{2}}{{H}_{5}}-O-{{C}_{2}}{{H}_{5}}$show the following isomerism

A) position

B) functional

C) metamerism

D) tautomerism

• question_answer150) $C{{H}_{3}}CHO+C{{H}_{3}}MgBr\xrightarrow[{}]{{}}A$ Compound A, is

A) a perimary alcohol

B) a secondary alcohol

C) a tertiary alcohol

D) $C{{H}_{3}}-\underset{\begin{smallmatrix} || \\ O \end{smallmatrix}}{\mathop{C}}\,-C{{H}_{3}}$

• question_answer151) The electronic configuration of dication of a element is 2, 8, 14. The atomic number of this element will be

A) 26

B) 24

C) 25

D) 28

• question_answer152) $RCOOH\xrightarrow[{}]{Soda\lim e}X+C{{O}_{2}}$ Compound X, is

A) $RH$

B) $RC{{H}_{3}}$

C) $R-R$

D) None of these

• question_answer153) $RMgI+C{{H}_{3}}OH\xrightarrow[{}]{{}}X$ Compound X, is

A) RH

B) $RC{{H}_{3}}$

C) $ROH$

D) None of these

• question_answer154) On moving left to right in period, the ionization potential

A) increases

B) decreases

C) first increases then decreases

D) first decreases then increases

• question_answer155) Lithium and magnesium show the similarity in characteristics because

A) both find in nature along

B) both have approximately same size

C) both have same electronic configuration

D) their ratio of charge and size are approximately same

• question_answer156) Which of the following character always increases on moving top to bottom in group?

A) ionization potential

B) electron affinity

C) electronegativity

• question_answer157) In the extraction of copper, its ore is heated at high temperature, in the presence of air. This process is called

A) smelting

B) calcination

C) roasting

D) distillation

• question_answer158) A white precipitate of silver chloride is obtained on adding silver nitrate in sodium chloride solution because

A) $NaCl$is insoluble in water

B) CF ion is present in$NaCl$

C) $AgN{{O}_{3}}$is insoluble in$NaCl$solution

D) $NaCl$is a inorganic compound

• question_answer159) Aromatic compounds give mainly following reaction

C) nucleophilic substitution

D) electrophilic substitution

• question_answer160) The$[{{H}^{+}}]$of a solution is 1 mol/L. Its pH will be

A) 1.0

B) 10.0

C) 0.1

D) zero

• question_answer161) On ozonolysis of a alkene, only single organic compound obtains. Alkene is

A) $C{{H}_{3}}-CH=C{{H}_{2}}$

B) $C{{H}_{3}}CH=CH-C{{H}_{3}}$

C) $C{{H}_{3}}-\underset{\begin{smallmatrix} | \\ C{{H}_{3}} \end{smallmatrix}}{\mathop{C}}\,=C{{H}_{2}}$

D) $C{{H}_{3}}-C{{H}_{2}}-CH=C{{H}_{2}}$

• question_answer162) On adding$N{{H}_{4}}OH$in equilibrium $N{{H}_{4}}ClNH_{4}^{+}+C{{l}^{-}}$

A) more$C{{l}^{-}}$will form

B) more$N{{H}_{4}}Cl$will decompose

C) more$NH_{4}^{+}$will form

D) decomposition of$N{{H}_{4}}Cl$will reduce

• question_answer163) For an electron$n=2,\text{ }l=1$. Total magnetic quantum number for this will be

A) 3

B) 2

C) 1

D) zero

• question_answer164) The aqueous solution of a salt is basic. It is the salt of

A) strong acid and strong base

B) strong acid and weak base

C) weak acid and weak base

D) weak acid and strong base

A) to obtain pure$Al$

B) to dissolve alumina

C) to remove impurities

D) to catalysis

• question_answer166) The main product of the reaction of $C{{H}_{3}}C{{H}_{2}}N{{H}_{2}}$with nitrous acid

A) $C{{H}_{3}}CN$

B) $C{{H}_{3}}ONO$

C) $C{{H}_{3}}C{{H}_{2}}OH$

D) $C{{H}_{3}}-N=O$

• question_answer167) $A+NaN{{O}_{2}}+HCl\xrightarrow[{}]{{}}C{{O}_{2}}+{{N}_{2}}+{{H}_{2}}O$ Compound A, is

A) $N{{H}_{2}}CON{{H}_{2}}$

B) $C{{H}_{3}}N{{H}_{2}}$

C) $C{{H}_{3}}NC$

D) $C{{H}_{3}}CON{{H}_{2}}$

• question_answer168) If a system in equilibrium is subjected to a change of concentration, temperature or pressure the equilibrium shifts in a direction so as to undo the effect of the change imposed. This law is known as

A) Le-Chatelier's principle

C) Guldberg-Waage principle

D) Gay-Lussac's principle

• question_answer169) Alkaline hydrolysis of ethyl acetate gives

A) $C{{H}_{3}}COOH$ and${{C}_{2}}{{H}_{5}}OH$

B) $C{{H}_{3}}COONa$and ${{C}_{2}}{{H}_{5}}OH$

C) $C{{H}_{3}}COOH$and $N{{H}_{3}}$

D) $C{{H}_{3}}COONa$and $N{{H}_{3}}$

• question_answer170) Which of the following will reduce the Tollen's reagent?

A) $HCOOH$

B) $C{{H}_{3}}COOH$

C) $HOOC-COOH$

D) ${{C}_{6}}{{H}_{5}}COOH$

• question_answer171) For the reaction, $2S{{O}_{3}}2S{{O}_{2}}+{{O}_{2}}$ the expression for the equilibrium constant $({{K}_{c}})$is

A) $\frac{2[S{{O}_{2}}][{{O}_{2}}]}{2[S{{O}_{3}}]}$

B) $\frac{[S{{O}_{2}}][{{O}_{2}}]}{[S{{O}_{3}}]}$

C) $\frac{{{[S{{O}_{3}}]}^{2}}}{[S{{O}_{2}}][{{O}_{2}}]}$

D) $\frac{{{[S{{O}_{2}}]}^{2}}[{{O}_{2}}]}{{{[S{{O}_{3}}]}^{2}}}$

• question_answer172) The electronic configuration of Fe is

A) 2, 8, 14, 2

B) 2, 8, 8. 6, 2

C) 2, 6, 18

D) None of these

• question_answer173) The following reaction is called ${{C}_{6}}{{H}_{5}}OH+3KOH+CHC{{l}_{3}}\to$ $+3KCl+{{H}_{2}}O$

A) Kolbe-Schmidt reaction

B) Gattermann reaction

C) Fries rearrangement

D) Reimer-Tiemann reaction

• question_answer174) The product of the reaction of chloroform with cone.$HN{{O}_{3}}$is

A) chloretone

B) chloropicrin

C) nitromethane

D) methyl nitrite

• question_answer175) At equilibrium in a reversible reaction the catalyst

A) increases the rate of forward direction

B) increases the rate of backward direction

C) increases the rate of forward and backward direction equally

D) None of the above

• question_answer176) The process of conversion of higher hydrocarbon to lower hydrocarbon is called

A) isomerisation

B) cracking

C) hydroformation

D) mining

• question_answer177) Which of the following reagent will differentiate in propene and propyne?

A) Alkaline $KMn{{O}_{4}}$

B) Bromine water

C) ${{[Ag{{(N{{H}_{3}})}_{2}}]}^{+}}$

D) None of these

• question_answer178) Which of the following is Hofmann bromamide reaction?

A) $RCN+4H\xrightarrow[{}]{{}}RC{{H}_{2}}N{{H}_{2}}$

B) $C{{H}_{3}}COCl+C{{H}_{3}}OH\xrightarrow[{}]{{}}$ $C{{H}_{3}}COOC{{H}_{3}}+HCl$

C) $C{{H}_{3}}CN+{{H}_{2}}O\xrightarrow[{}]{NaOH}C{{H}_{3}}COONa+N{{H}_{3}}$

D) $C{{H}_{3}}COON{{H}_{2}}+B{{r}_{2}}+4KOH\xrightarrow[{}]{{}}$ $C{{H}_{3}}N{{H}_{2}}+{{K}_{2}}C{{O}_{3}}+2KBr+2{{H}_{2}}O$

• question_answer179) The solubility product of PbS is$3.4\times {{10}^{-28}}$. If the concentration of$P{{b}^{2+}}$is$1\times {{10}^{-2}}$mol then the concentration of${{S}^{2-}}$at which$PbS$will precipitated

A) $3.4\times {{10}^{-26}}$

B) $3.4\times {{10}^{-30}}$

C) $1\times {{10}^{-2}}$

D) $3.4\times {{10}^{-22}}$

• question_answer180) Formaldehyde reacts with ammonia to give following compound

A) formalin

B) formaldehyde ammonia

C) hexamethylene tetraamine

D) formamide

• question_answer181) Which of the following characteristics does not show byd-block elements?

A) Variable valency

B) Formation to complex compound

C) Diamagnetism

D) Paramagnetism

• question_answer182) $RX+2Na+RX\xrightarrow[{}]{{}}R-R+2NaX$ The above reaction is called

A) Wurtz reaction

B) Williamson's synthesis

C) Kolbe's electrolysis

D) Sabatier-Sendern's reaction

• question_answer183) $C{{H}_{3}}COOAg+B{{r}_{2}}\xrightarrow[{}]{\Delta }C{{H}_{3}}Br+AgBr+C{{O}_{2}}$ This reaction is called

A) Hofmann mustard oil reaction

B) Hell Volhard Zeiinsky reaction

C) Hunsdiecker reaction

D) Wurtz-Fittig reaction

A) Solubility product = ionic product

B) Solubility product > ionic product

C) Solubility product < ionic product

D) None of the above

• question_answer185) HCHO + 40% strong alkaline solution$\xrightarrow[{}]{{}}$ Products one of the product in this reaction is

A) $C{{H}_{3}}C{{H}_{2}}OH$

B) $C{{H}_{3}}COOH$

C) $CH\equiv CH$

D) $C{{H}_{3}}OH$

• question_answer186) Which of the following reaction will not affected by pressure?

A) ${{N}_{2}}+3{{H}_{2}}2N{{H}_{3}}$

B) ${{N}_{2}}+{{O}_{2}}2NO$

C) $2S{{O}_{2}}+{{O}_{2}}2S{{O}_{3}}$

D) $PC{{l}_{3}}+C{{l}_{2}}PC{{l}_{5}}$

• question_answer187) In an atom, two electrons do not have identical set of four quantum number. This statement is belong to

A) Hund's law

B) Aufbau's law

C) $(n+l)$ law

D) Fault's law

• question_answer188) In froth floatation method of ore concen-tration, ore particles rise to the surface because

A) they are light

B) these are insoluble

C) their surface do not wet with water easily

D) these contain electric charge

• question_answer189) Which of the following is amphoteric oxide?

A) $MgO$

B) $A{{l}_{2}}{{O}_{3}}$

C) ${{K}_{2}}O$

D) $CuO$

• question_answer190) Alkaline hydrolysis of a ester is called

A) hydrolysis

B) saponification

C) neutralization

D) hydrogenation

• question_answer191) The number of n electrons present in a aromatic ring are

A) $(4+2)n$

B) $(4+2n)$

C) $(4n+2)$

D) None of these

A) ortho-nitrophenol

B) 2, 4, 6-trinitro benzoic acid

C) 2, 4, 6-trinitrophenol

D) 2, 4-dinitrophenol

• question_answer193) The correct radius order of atom, its cation and anion is

A) atom < cation > anion

B) atom > cation < anion

C) atom = cation = anion

D) atom > cation > anion

• question_answer194) $C{{H}_{3}}C{{H}_{2}}I+NaOR\xrightarrow[{}]{{}}C{{H}_{3}}C{{H}_{2}}OR+NaI$ This reaction is

A) Wurtz reaction

B) Williamson's synthesis

C) Wittig reaction

D) Curtius reaction

C) electrophilic substitution

• question_answer196) ${{N}_{2}}+{{O}_{2}}2NO;$ $\Delta H=43.2\,kcal$ Equilibrium will go in forward direction

A) on increasing temperature

B) on decreasing temperature

C) on increasing pressure

D) on decreasing pressure

• question_answer197) Ethanal forms 3-hydroxy butanal on reaction with alkali. This reaction is

A) Claisen condensation

B) Polymerization

C) Aldol condensation

D) Reimer-Tiemann reaction

• question_answer198) Absolute alcohol can obtained from absolute spirit by which process

A) steam distillation

B) fractional distillation

C) azerotropic distillation

D) hydrolysis

• question_answer199) Ethyl alcohol is obtained from sugar by following enzyme reaction

A) invertase

B) zymase

C) maltase

D) diastase

A) alloy

B) transition metal

C) non-metal

D) element

• question_answer201) If$\frac{x-a}{b+c}+\frac{x-b}{c+a}+\frac{x-c}{a+b}=3,$then the value of$x$ is

A) $a+b+c$

B) $abc$

C) 1

D) 0

• question_answer202) If one root of the equation${{x}^{2}}+px+12=0$is 4 when equation${{x}^{2}}+px+q=0$have equal roots, then the value of$q$is

A) $\frac{4}{49}$

B) $\frac{49}{4}$

C) $4$

D) $\frac{1}{4}$

• question_answer203) The real roots of the equation${{x}^{2}}+5|x|+4=0$are

A) $(-1,-4)$

B) $(\pm 1,\pm 4)$

C) $(-4,4)$

D) None of these

• question_answer204) In a GP,$(p+q)$th term is 211 and$(p-q)$th term is n, then the value of pth term is

A) $\frac{m}{n}$

B) $\sqrt{\frac{m}{n}}$

C) $\sqrt{mn}$

D) $\sqrt{\left( \frac{n}{m} \right)}$

• question_answer205) If a, b, c are in AP, then$\frac{a}{bc},\frac{1}{c},\frac{1}{b}$will be in

A) AP

B) GP

C) HP

D) None of these

• question_answer206) If${{a}^{1/x}}={{b}^{1/y}}={{c}^{1/z}}$and$a,b,c$are in GP, then$x,y,z$will be in

A) AP

B) GP

C) HP

D) None of these

• question_answer207) In the expansion of${{\left( \frac{x}{3}-\frac{2}{{{x}^{2}}} \right)}^{10}},$the rth term contains${{x}^{4}},$then the value of r is

A) 2

B) 3

C) 4

D) 5

• question_answer208) Sum of the series$\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+....$is

A) $log\text{ }2$

B) $log\text{ }3$

C) $2\text{ }log\text{ }2-1$

D) $2\text{ }log\text{ }3-1$

• question_answer209) If${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=1,$then$ab+bc+ca$lies in the interval

A) $\left[ \frac{1}{2},2 \right]$

B) $[-1,2]$

C) $\left[ -\frac{1}{2},1 \right]$

D) $\left[ -1,\frac{1}{2} \right]$

• question_answer210) In the 13 cricket players, 4 are bowlers and 2 are wicket keepers, then in how many ways can form a cricket team of 11 players in which one wicket keeper and atleast 3 bowlers included, is

A) 112

B) 22

C) 8

D) 1

• question_answer211) Two dice are tossed together. The probability that the sum of the numbers appeared on both dice is 5, is

A) $\frac{1}{8}$

B) $\frac{1}{9}$

C) $\frac{1}{12}$

D) $\frac{1}{16}$

• question_answer212) Between two players a coin is tossed 4 times. The probability that both players get equal number of heads, is

A) $\frac{1}{16}$

B) $\frac{5}{256}$

C) $\frac{35}{128}$

D) None of these

• question_answer213) A pack of cards contains 4 aces, 4 kings, 4 queens and 4 jacks. Two cards are drawn at random from this pack without replacement. The probability that atleast one of them will be an aces, is

A) $\frac{1}{5}$

B) $\frac{3}{16}$

C) $\frac{9}{20}$

D) $\frac{1}{9}$

• question_answer214) If$A=\left[ \begin{matrix} 1 & 2 \\ 2 & 3 \\ \end{matrix} \right],$then the value of${{A}^{-1}}$is

A) $\left[ \begin{matrix} -3 & 2 \\ 2 & -1 \\ \end{matrix} \right]$

B) $\left[ \begin{matrix} 3 & 2 \\ 2 & 1 \\ \end{matrix} \right]$

C) $\left[ \begin{matrix} 1 & 2 \\ 2 & 3 \\ \end{matrix} \right]$

D) $\left[ \begin{matrix} 3 & -2 \\ -2 & 1 \\ \end{matrix} \right]$

• question_answer215) The value of$\left| \begin{matrix} b+c & a+b & a \\ c+a & b+c & b \\ a+b & c+a & c \\ \end{matrix} \right|$is

A) ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc$

B) $0$

C) $2abc(a+b+c)$

D) 1

• question_answer216) If$f:R\to R$and$f(x)=tan\text{ }x,$then value of${{f}^{-1}}(1)$is

A) $\left\{ n\pi +\frac{\pi }{4},n\in Z \right\}$

B) $\frac{\pi }{4}$

C) does not exist

D) None of these

• question_answer217) The value of$\underset{x\to 0}{\mathop{\lim }}\,\frac{1-\cos x}{{{x}^{2}}}$is

A) 0

B) $\frac{1}{4}$

C) $\frac{1}{2}$

D) 1

• question_answer218) If function $f(x)=\left\{ \begin{matrix} {{x}^{2}}/a & ,0\le x<1 \\ a & ,1\le x<\sqrt{2} \\ \frac{(2{{b}^{2}}-4b)}{{{x}^{2}}} & \sqrt{2}\le x<\infty \\ \end{matrix} \right.$ is continuous for$0<x<\infty ,$then the values of$a$ and$b$are

A) $a=1,b=-1$

B) $a=-1,b=1$

C) $a=-1,b\text{ }=1+\sqrt{2}$

D) $a=-1,b=\sqrt{2}-1$

• question_answer219) The value of$\underset{x\to \infty }{\mathop{\lim }}\,=\frac{{{x}^{2}}\sin \left( \frac{1}{x} \right)-x}{1-|x|}$is

A) $-1$

B) $1$

C) 0

D) $\infty$

• question_answer220) If${{x}^{y}}.{{y}^{x}}=1,$then$\frac{dy}{dx}$is equal to

A) $\frac{y(x+y\log x)}{x(y+x\log y)}$

B) $\frac{y(y+x\log y)}{x(y\log x+y)}$

C) $-\frac{y(y+x\log y)}{x(y\log x+x)}$

D) $-\frac{y(x+y\log x)}{x(y+x\log y)}$

• question_answer221) If${{y}^{2}}=a{{e}^{-2x}}+\frac{2}{5}(\cos x-2\sin x),$then the value of$y\frac{dy}{dx}+{{y}^{2}}+\sin x$ is

A) 0

B) $-1$

C) 1

D) None of these

• question_answer222) If$p(x)$is a cubic polynomial and$p(0)=4,$ $p'(0)=3,p''(0)=4,p'''(0)=6,$then the value of$p'(-1)$is

A) 2

B) $-10$

C) 10

D) None of these

• question_answer223) The angle of intersection of the curves$y={{x}^{2}}$ and$6y=7-{{x}^{3}}$at point (1,1), is

A) $\frac{\pi }{4}$

B) $\frac{\pi }{3}$

C) $\frac{\pi }{2}$

D) $\pi$

• question_answer224) Curves$a{{x}^{2}}+b{{y}^{2}}=1$and$a'{{x}^{2}}+b'{{y}^{2}}=1$intersect each other orthogonally, if

A) $\frac{1}{a}+\frac{1}{a'}=\frac{1}{b}+\frac{1}{b'}$

B) $\frac{1}{a}+\frac{1}{b}=\frac{1}{a'}+\frac{1}{b'}$

C) $\frac{1}{a}-\frac{1}{b}=\frac{1}{a'}-\frac{1}{b'}$

D) None of these

• question_answer225) In the interval$[-1,2],$function$f(x)=|x|+|x-1|$will be

A) constant

B) increasing

C) decreasing

D) None of these

• question_answer226) The equation of tangent to the parabola ${{y}^{2}}=4x$at point (1, 2) is

A) $x-y+1=0$

B) $x+y+1=0$

C) $x+y-1=0$

D) $x-y-1=0$

• question_answer227) The distance covered by a particle in t second is$s=a{{e}^{t}}+b{{e}^{-t}}$. At time t the acceleration of the particle is

A) $s\,m/{{s}^{2}}$

B) $as\,m/{{s}^{2}}$

C) $bs\text{ }m/{{s}^{2}}$

D) $-bs\text{ }m/{{s}^{2}}$

• question_answer228) The value of$\int{{{x}^{2}}{{e}^{{{x}^{3}}}}}\cos ({{e}^{{{x}^{3}}}})dx$ is

A) $\sin ({{e}^{{{x}^{3}}}})+c$

B) $\frac{1}{3}\sin ({{e}^{{{x}^{3}}}})+c$

C) $-\frac{1}{3}\sin ({{e}^{{{x}^{3}}}})+c$

D) $3\sin ({{e}^{{{x}^{3}}}})+c$

• question_answer229) If $\int_{0}^{\infty }{\frac{{{x}^{2}}dx}{({{x}^{2}}+{{a}^{2}})({{x}^{2}}+{{b}^{2}})({{x}^{2}}+{{c}^{2}})}}$ $=\frac{\pi }{2(a+b)(b+c)(c+a)},$then the value of $\int_{0}^{\infty }{\frac{dx}{({{x}^{2}}+4)({{x}^{2}}+9)}}$is

A) $\frac{\pi }{20}$

B) $\frac{\pi }{40}$

C) $\frac{\pi }{60}$

D) $\frac{\pi }{80}$

• question_answer230) If$\int{\frac{dx}{x\sqrt{1-{{x}^{3}}}}=a\log \left| \frac{\sqrt{(1-{{x}^{3}})}-1}{\sqrt{(1-{{x}^{3}})}+1} \right|}+b,$then the value of a is

A) $-\frac{1}{3}$

B) $\frac{1}{3}$

C) $-\frac{2}{3}$

D) $\frac{2}{3}$

• question_answer231) If$f(a-x)=f(x),$then the value of$\int_{0}^{a}{xf(x)}dx$is

A) $a\int_{0}^{a}{f(x)}dx$

B) $\frac{a}{2}\int_{0}^{a}{x\,f(x)\,}dx$

C) $\frac{{{a}^{2}}}{2}\int_{0}^{a}{f(x)\,}dx$

D) None of these

• question_answer232) The value of$\int_{0}^{\pi /4}{\frac{\sec x\cos ecx}{\log (\tan x)}}dx$ is

A) 0

B) 1

C) does not exist

D) None of these

• question_answer233) The area of the region bounded by the parabola${{y}^{2}}=4\text{ a}x$and its latusrectum is

A) $\frac{4a}{3}sq\,unit$

B) $\frac{4{{a}^{3}}}{3}sq\,unit$

C) $\frac{8a}{3}sq\,unit$

D) $\frac{8{{a}^{2}}}{3}sq\,unit$

• question_answer234) If in the interval$\left[ 0,\frac{\pi }{2} \right]$the area of the region bounded by the curve$y=sin\text{ }x$and$x-$axis is A sq unit, then in the same interval, the area of the region bounded by the curve$y=cos\text{ }x$ and$x-$axis is

A) A sq unit

B) $\frac{\pi }{2}-A$ sq unit

C) $-A$ sq unit

D) None of these

• question_answer235) The equation of the curve which satisfies the differential equation$(1+{{y}^{2}})dx-xy\,dy=0$ and passes through the point (1, 0) is

A) ${{x}^{2}}+{{y}^{2}}=1$

B) ${{x}^{2}}-{{y}^{2}}=1$

C) $2{{x}^{2}}+{{y}^{2}}=2$

D) None of these

• question_answer236) The solution of the differential equation $\frac{dy}{dx}=\frac{x+y+7}{2x+2y+3}$is

A) $6(x+y)-11\text{ }log\text{ (}3x+3y+10)=9x+c$

B) $6(x+y)+11\text{ }log\text{ (}3x+3y+10)=9x+c$

C) $6(x+y)-\log \left( x+y+\frac{10}{3} \right)=9x+c$

D) $6(x+y)\left( x+y+\frac{10}{3} \right)=9x+c$

• question_answer237) If ${{\left( \frac{1-i}{1+i} \right)}^{100}}=a+ib,$then

A) $a=1,b=0$

B) $a=0,b=1$

C) $a=-1,b=2$

D) $a=2,b=-1$

• question_answer238) If complex numbers${{z}_{1}},{{z}_{2}}$and${{z}_{3}}$represents the vertices of an equilateral triangle such that$|{{z}_{1}}|=|{{z}_{2}}|=|{{z}_{3}}|,$then

A) ${{z}_{1}}+{{z}_{2}}+{{z}_{3}}\le 0$

B) ${{z}_{1}}+{{z}_{2}}+{{z}_{3}}\ge 0$

C) ${{z}_{1}}+{{z}_{2}}+{{z}_{3}}=0$

D) None of these

• question_answer239) If$m\sin \theta =n\sin (\theta +2\alpha ),$then the value of$\tan (\theta +\alpha )\cot \alpha$is

A) $\frac{m+n}{m-n}$

B) $\frac{m-n}{m+n}$

C) $\frac{1-n}{1+n}$

D) $\frac{1+n}{1-n}$

• question_answer240) If$A+B+C=\pi ,$then$tan\text{ }A+tan\text{ }B+tan\text{ }C$is equal to

A) $-1$

B) 1

C) $tan\text{ }A\text{ }tan\text{ }B\text{ }tan\text{ }C$

D) $cot\text{ }A\text{ }cot\text{ }B\text{ }cot\text{ }C$

• question_answer241) The maximum value of$a\text{ }cos\theta +b\text{ }sin\theta$is

A) $a+b$

B) $|a|+|b|$

C) $a-b$

D) $\sqrt{{{a}^{2}}+{{b}^{2}}}$

• question_answer242) The general solution of the equation $(\sqrt{3}-1)\sin \theta +(\sqrt{3}+1)\cos \theta =2$is

A) $2n\pi \pm \frac{\pi }{4}+\frac{\pi }{12}$

B) $n\pi +{{(-1)}^{n}}\frac{\pi }{4}+\frac{\pi }{12}$

C) $2n\pi \pm \frac{\pi }{4}-\frac{\pi }{12}$

D) $n\pi +{{(-1)}^{n}}\frac{\pi }{4}-\frac{\pi }{12}$

• question_answer243) The value of${{\cot }^{-1}}\left[ \frac{\sqrt{(1+\sin x)}+\sqrt{(1-\sin x)}}{\sqrt{(1-\sin x)}-\sqrt{(1+\sin x)}} \right]$ is

A) $\frac{x}{2}$

B) $\pi -\frac{x}{2}$

C) $\pi -x$

D) $2\pi -x$

• question_answer244) In$\Delta ABC,$the value of$a(b\cos C-c\cos B)$is

A) 0

B) ${{a}^{2}}$

C) ${{b}^{2}}-{{c}^{2}}$

D) ${{a}^{2}}-{{b}^{2}}$

• question_answer245) In$\Delta$ABC, if$\angle A=30{}^\circ ,c=7\sqrt{3}$and$\angle C=90{}^\circ ,$ then the value of a is

A) $\frac{7}{2}$

B) $7\sqrt{3}$

C) $\frac{7}{2}\sqrt{3}$

D) $7\sqrt{2}$

• question_answer246) The equation of straight line which cut equal intercepts on axes and passes through the point$(1,-2)$is

A) $x+y=1$

B) $x-y=1$

C) $x-y=2$

D) $x+y+1=0$

• question_answer247) If the equation of tangent to a circle at point (3, 5) is$2x-y-1=0$and its centre lies on $x+y=5,$then the equation of circle is

A) ${{x}^{2}}+{{y}^{2}}+6x-16y+28=0$

B) ${{x}^{2}}+{{y}^{2}}-6x-16y+28=0$

C) ${{x}^{2}}+{{y}^{2}}+6x+6y+28=0$

D) ${{x}^{2}}+{{y}^{2}}-6x-6y-28=0$

• question_answer248) The curve represented by the parametric equations $x=3(\cos t+\sin t),y=4$$(cos\text{ }t-sin\text{ }t)$is

A) a parabola

B) an ellipse

C) a hyperbola

D) None of these

• question_answer249) Eccentricity of the hyperbola${{x}^{2}}-{{y}^{2}}=4$is

A) $\sqrt{2}$

B) $2\sqrt{3}$

C) $\sqrt{3}$

D) $3\sqrt{3}$

• question_answer250) The equation of the normal to the parabola ${{y}^{2}}=4x$which is parallel to the line $y=2x-5,$is

A) $y=2x$

B) $y=2x-10$

C) $y=2x+10$

D) $y=2x-12$

• question_answer251) If (2, 3, 5) is one end of a diameter of the sphere${{x}^{2}}+{{y}^{2}}+{{z}^{2}}-6x-12y-2z+20=0,$then the coordinates of the other end of the diameter are

A) $(4,\text{ }3,\text{ }5)$

B) $(4,9,-3)$

C) $(4,\text{ }3,-3)$

D) $(4,-9,3)$

• question_answer252) If$\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=\overrightarrow{0},|\overrightarrow{a}|=3,|\overrightarrow{b}|=5,|\overrightarrow{c}|=7,$then angle between a and b is

A) $\frac{\pi }{6}$

B) $\frac{2\pi }{3}$

C) $\frac{5\pi }{3}$

D) $\frac{\pi }{3}$

• question_answer253) If$\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$are three unit vectors,$\overrightarrow{b}\ne \overrightarrow{c}$and $\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{c})=\frac{1}{2}\overrightarrow{b},$ then angle between$\overrightarrow{a}$and$\overrightarrow{c}$is

A) $\frac{\pi }{6}$

B) $\frac{\pi }{3}$

C) $\frac{\pi }{4}$

D) $\frac{\pi }{2}$

• question_answer254) The roots of the equation$a{{x}^{2}}+bx+c=0$are $\alpha ,\beta$and roots of$A{{x}^{2}}+Bx+C=0$are $\alpha -k,\beta -k,$then the value of$\frac{({{B}^{2}}-4AC)}{({{b}^{2}}-4ac)}$is

A) ${{\left( \frac{A}{a} \right)}^{2}}$

B) $x\le 0$

C) $0$

D) $1$

• question_answer255) The value of$x$which satisfied the in equation ${{x}^{3}}+1>{{x}^{2}}+x,$is:

A) $x\ge 0$

B) $x\le 0$

C) $x\ge -1$

D) $-1\le x\le 1$

• question_answer256) If$\frac{1}{q+r},\frac{1}{r+p},\frac{1}{p+q}$are in AP, then

A) $p,q,r$will be in AP

B) $\frac{1}{p},\frac{1}{q},\frac{1}{r}$will be in AP

C) ${{p}^{2}},{{q}^{2}},{{r}^{2}}$will be in AP

D) $\frac{1}{{{p}^{2}}},\frac{1}{{{q}^{2}}},\frac{1}{{{r}^{2}}}$will be in AP

• question_answer257) The roots of the equation${{x}^{2}}-3x+a=0$are$\alpha ,\beta$ and roots of the equation ${{x}^{2}}-12x+b=0$are$\gamma ,\delta$and$\alpha ,\beta ,\gamma ,\delta$are in GP, then

A) $a=2,b=32$

B) $a=3,b=12$

C) $a=4,b=16$

D) $a=12,b=3$

• question_answer258) The sum of the infinite terms of the series$1+\frac{4}{5}+\frac{7}{{{5}^{2}}}+\frac{10}{{{5}^{3}}}+...$is

A) $\frac{16}{35}$

B) $\frac{11}{8}$

C) $\frac{35}{16}$

D) $\frac{9}{16}$

• question_answer259) If$x,2x+2,3x+3,...$are in GP, then fourth term of this series is

A) 13.5

B) $-13.5$

C) 27

D) $-27$

• question_answer260) The number of total terms in the expansion of${{(1+3\sqrt{2}x)}^{9}}+{{(1-3\sqrt{2}x)}^{9}}$is

A) 9

B) 0

C) 5

D) 10

• question_answer261) The value of$\frac{1+\frac{1}{2!}+\frac{2}{3!}+\frac{{{2}^{2}}}{4!}+\frac{{{2}^{3}}}{5!}+.....}{1+\frac{1}{2!}+\frac{1}{4!}+\frac{1}{6!}+...}$is

A) $\frac{e}{4}$

B) $\frac{e}{2}$

C) $8e$

D) $\frac{e({{e}^{2}}-1)}{2({{e}^{2}}+1)}$

• question_answer262) If n is a multiple of 3, then coefficient of${{x}^{n}}$in the expansion of$log(1+x+{{x}^{2}})$is (where$|x|<2$)

A) $-\frac{2}{n}$

B) $-\frac{1}{n}$

C) $\frac{1}{n}$

D) $\frac{2}{n}$

• question_answer263) If a, b, c are different positive numbers, then the value of$(b+ca)(c+a-b)(a+b-c)$$-abc$will be

A) positive

B) negative

C) zero

D) None of these

• question_answer264) If set A have 10 elements, then the number of relations from A to A is

A) $10!$

B) ${{10}^{10}}$

C) ${{2}^{10}}$

D) ${{2}^{10}}-1$

• question_answer265) If two dice are thrown together. Probability that the sum of the numbers appearing on them is 7, is

A) $\frac{5}{36}$

B) $\frac{1}{6}$

C) $\frac{7}{36}$

D) $\frac{8}{36}$

• question_answer266) If $A=\left[ \begin{matrix} 1 & 2 \\ 3 & -5 \\ \end{matrix} \right],B=\left[ \begin{matrix} 1 & 0 \\ 0 & 2 \\ \end{matrix} \right]$and X is a matrix such that$A=BX,$then the value of X is

A) $\left[ \begin{matrix} 2 & 4 \\ 3 & -5 \\ \end{matrix} \right]$

B) $\frac{1}{2}\left[ \begin{matrix} 2 & 4 \\ 3 & -5 \\ \end{matrix} \right]$

C) $\left[ \begin{matrix} -2 & 4 \\ 3 & 5 \\ \end{matrix} \right]$

D) $\frac{1}{2}\left[ \begin{matrix} -2 & 4 \\ 3 & 5 \\ \end{matrix} \right]$

• question_answer267) The system of equations$x+2y+3z=1,$$2x+y+3z=2,$$5x+5y+9z=4$have

A) no solution is possible

B) only one solution

C) infinite solutions

D) None of the above

• question_answer268) If${{\left| \begin{matrix} 4 & 1 \\ 2 & 1 \\ \end{matrix} \right|}^{2}}=\left| \begin{matrix} 3 & 2 \\ 1 & x \\ \end{matrix} \right|-\left| \begin{matrix} x & 3 \\ -2 & 1 \\ \end{matrix} \right|,$then the value of$x$is

A) 6

B) 7

C) 8

D) 11

• question_answer269) If$\left| \begin{matrix} a+x & a-x & a-x \\ a-x & a+x & a-x \\ a-x & a-x & a+x \\ \end{matrix} \right|=0,$then the values of $x$will be

A) $x=0,x=4a$

B) $x=0,x=a$

C) $x=0,\text{ }x=2a$

D) $x=0,\text{ }x=3a$

• question_answer270) If$\Sigma x=15,\Sigma y=40,\Sigma xy=110$and$n=5,$then the value of cov$(x,y)$is

A) $-2$

B) 2

C) 22

D) None of these

• question_answer271) If$f:N\to R,f(x)=\frac{(2x-1)}{2}$and$g:Q\to R,g(x)=x+2$are two functions, then the value of$(gof)\left( \frac{3}{2} \right)$is

A) 1

B) 3

C) $\frac{7}{2}$

D) None of these

• question_answer272) The value of$\underset{x\to 0}{\mathop{\lim }}\,\frac{\sqrt{\left[ \frac{1}{2}(1-\cos 2x) \right]}}{x}$is

A) 1

B) $-1$

C) 0

D) None of these

• question_answer273) If function $f(x)=\left\{ \begin{matrix} \frac{\sqrt{(1+px)}-\sqrt{(1-px)}}{x}, & x<0 \\ \frac{2x+1}{x-2} & ,0\le x\le 1 \\ \end{matrix} \right.$ is continuous in the interval$[-1,1],$then the value of p is

A) $-1$

B) $-1/2$

C) 1/2

D) 1

• question_answer274) If$y=\log |x|$and$x\ne 0,$then$\frac{dy}{dx}$is equal to

A) $\frac{1}{x}$

B) $-\frac{1}{x}$

C) $\frac{1}{|x|}$

D) None of these

• question_answer275) If$y={{\sin }^{-1}}\sqrt{(1-x)}+{{\cos }^{-1}}\sqrt{x},$then$\frac{dy}{dx}$is equal to

A) $\frac{-1}{\sqrt{x(1-x)}}$

B) $\frac{1}{\sqrt{x(1+x)}}$

C) $\frac{1}{\sqrt{x(1-x)}}$

D) None of these

• question_answer276) If$y=b\cos \left\{ n\log \left( \frac{x}{n} \right) \right\},$then which of the following is correct?

A) ${{x}^{2}}{{y}_{2}}+x{{y}_{1}}-{{n}^{2}}y=0$

B) ${{x}^{2}}{{y}_{2}}-x{{y}_{1}}-{{n}^{2}}y=0$

C) ${{x}^{2}}{{y}_{2}}+x{{y}_{1}}+{{n}^{2}}y=0$

D) ${{x}^{2}}{{y}_{2}}-x{{y}_{1}}+{{n}^{2}}y=0$

• question_answer277) If tangent to the curve$x=a{{t}^{2}},\text{ }y=2at$is perpendicular to$x-$axis, then point of contact is

A) (0, 0)

B) (0, a)

C) (a, 0)

D) (a, a)

• question_answer278) The equation of ellipse whose vertex is (?5,0) and focus is (?4,0), is

A) $9{{x}^{2}}+25{{y}^{2}}=225$

B) $25{{x}^{2}}+9{{y}^{2}}=225$

C) $3{{x}^{2}}+4{{y}^{2}}=192$

D) None of these

• question_answer279) The value of$\int{\frac{dx}{{{e}^{x}}+{{e}^{-x}}}}$is

A) ${{\tan }^{-1}}({{e}^{x}})+c$

B) $\log ({{e}^{x}}+{{e}^{-x}})+c$

C) $\log ({{e}^{2x}}+1)+c$

D) None of these

• question_answer280) The value of$\int{{{e}^{x}}\left\{ \frac{(x-1)}{{{(x+1)}^{3}}} \right\}}dx$is

A) $\frac{{{e}^{x}}}{{{(x+1)}^{2}}}+c$

B) $\frac{{{e}^{x}}}{(x+1)}+c$

C) $\frac{-{{e}^{x}}}{(x+1)}+c$

D) $\frac{-{{e}^{x}}}{{{(x+1)}^{2}}}+c$

• question_answer281) The value of$\int_{-\pi /2}^{\pi /2}{\log \left( \frac{2-\sin \theta }{2+\sin \theta } \right)dx}$is

A) 0

B) 1

C) 2

D) None of these

• question_answer282) The value of$\int_{0}^{\pi /4}{\log (1+\tan x)dx}$is

A) $\frac{1}{2}\pi \log 8$

B) $\frac{1}{4}\pi \log 2$

C) $\frac{1}{8}\pi \log 2$

D) $\frac{1}{4}\pi \log 8$

• question_answer283) The maximum value of$f(x)=\int_{1}^{x}{|t|}\,dt$in the interval$\left[ -\frac{1}{2},\frac{1}{2} \right]$is

A) $-\frac{1}{2}$

B) $\frac{1}{2}$

C) $-\frac{5}{8}$

D) $\frac{3}{8}$

• question_answer284) The area of the region bounded by the curve $y=4+3x-{{x}^{2}}$and$x-$axis is

A) $\left( \frac{125}{3} \right)sq\,units$

B) $\left( \frac{125}{6} \right)sq\,units$

C) $\left( \frac{125}{4} \right)sq\,units$

D) None of these

• question_answer285) If the area of the region bounded by the curve $y=8{{x}^{2}}-{{x}^{5}},$straight line$x=0$and$x=a$and the$x-$axis is$\frac{16}{3},$then the value of a is

A) ${{(8-4\sqrt{2})}^{1/3}}$

B) ${{(8+\sqrt{2})}^{1/3}}$

C) no value of$a$

D) None of these

• question_answer286) The solution of the differential equation${{x}^{2}}dy+y(x+y)dx=0$is

A) $y+2x=\frac{{{c}^{2}}{{x}^{2}}}{y}$

B) $y-2x=\frac{{{c}^{2}}{{x}^{2}}}{y}$

C) $y+2x={{c}^{2}}{{x}^{2}}y$

D) None of these

• question_answer287) The solution of the differential equation $\frac{dy}{dx}+\frac{1}{x}\tan y=\frac{1}{{{x}^{2}}}\tan y\sin y$is

A) $2x=\frac{(1+2c{{x}^{2}})}{\sin y}$

B) $2x=\sin y(1+2c{{x}^{2}})$

C) $2x+\sin y(1+c{{x}^{2}})=0$

D) None of the above

• question_answer288) If${{\alpha }_{1}},{{\alpha }_{2}},....,{{\alpha }_{n-1}}$are n roots of unity, then the value of$(1-{{\alpha }_{1}})(1-{{\alpha }_{2}}).....(1-{{\alpha }_{n-1}})$is

A) $n$

B) $n-1$

C) $-1$

D) $1$

• question_answer289) If$\left| \frac{({{z}_{1}}-2{{z}_{2}})}{(2-{{z}_{1}}{{\overline{z}}_{2}})} \right|=1$and$|{{z}_{2}}|\ne 1,$where${{z}_{1}}$and${{z}_{2}}$are complex numbers, then the value of$|{{z}_{1}}|$is

A) 1

B) $-1$

C) 2

D) $-2$

• question_answer290) The value of$sin\text{ }20{}^\circ sin\text{ }40{}^\circ sin\text{ }60{}^\circ sin\text{ }80{}^\circ$is:

A) $-\frac{3}{16}$

B) $\frac{3}{16}$

C) $-\frac{5}{16}$

D) $\frac{5}{16}$

• question_answer291) If$A+B+C=\frac{\pi }{2},$then the value of $sin\text{ }2A+sin\text{ }2B+sin\text{ }2C$is

A) $2\text{ }sin\text{ }A\text{ }sin\text{ }B\text{ }sin\text{ }C$

B) $2\text{ }cos\text{ }A\text{ }cos\,B\text{ }cos\text{ }C$

C) $4\text{ }sin\text{ }A\text{ }sin\text{ }B\text{ }sin\text{ }C$

D) $4\text{ }cos\text{ }A\text{ }cos\text{ B }cos\text{ }C$

• question_answer292) The period of$sin4\text{ }x+cos4\text{ }x$is

A) $\pi$

B) $\frac{\pi }{2}$

C) $2\pi$

D) None of these

• question_answer293) In the interval$0<x<2\pi ,$the solution of $(2\text{ }cos\text{ }x-1)(3+2\text{ }cos\text{ }x)=0$is

A) $\left\{ \frac{\pi }{3} \right\}$

B) $\left\{ \frac{\pi }{3},\frac{5\pi }{3} \right\}$

C) $\left\{ \frac{\pi }{3},\frac{5\pi }{3},{{\cos }^{-1}}\left( -\frac{3}{2} \right) \right\}$

D) None of the above

• question_answer294) If in the$\Delta ABC,\angle A=30{}^\circ ,c=10,\angle C=90{}^\circ ,$then the value of b is

A) 5

B) $5\sqrt{3}$

C) 10

D) None of these

• question_answer295) If${{\sin }^{-1}}\frac{x}{5}+\cos e{{c}^{-1}}\frac{5}{4}=\frac{\pi }{2},$then the value of$x$is

A) 1

B) 3

C) 4

D) 5

• question_answer296) A line is perpendicular to the line$3x+y=3$ and passes through the point$(-2,2),$then its intercept on y-axis is

A) $\frac{1}{3}$

B) $\frac{2}{3}$

C) $1$

D) $\frac{8}{3}$

• question_answer297) The locus of the foot of the perpendicular on the line$\frac{x}{a}+\frac{y}{b}=1,$where$\frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}=\frac{1}{{{c}^{2}}}$from the origin, is

A) ${{x}^{2}}+{{y}^{2}}={{c}^{2}}$

B) ${{x}^{2}}+{{y}^{2}}=2{{c}^{2}}$

C) ${{x}^{2}}+{{y}^{2}}=\frac{c}{2}$

D) None of these

• question_answer298) The focus of parabola${{y}^{2}}=4y-4x$is

A) (0, 2)

B) (1, 2)

C) (2, 0)

D) (2, 1)

• question_answer299) The focus of the hyperbola$4{{x}^{2}}-9{{y}^{2}}-36=0$are

A) $(\pm \sqrt{11},0)$

B) $(0,\pm \sqrt{12})$

C) $(\pm \sqrt{12},0)$

D) $(\pm \sqrt{13},0)$

• question_answer300) The equation of the tangent of the hyperbola $2{{x}^{2}}-3{{y}^{2}}=6$which is parallel to the line $y=3x+4,$is

A) $y=3x-5$

B) $y=3x+5$

C) $y=3x+5$and$y=3x-5$

D) None of the above

You will be redirected in 3 sec 